
Tutorial

Reviews

Introduction

Manuals

FOR WINDOWS™

An Introduction to Clarion: Hub

Start Here
Setting Up CW

3rd Party DocsLanguage Intro

CW Overview

Competitive

Marketing Docs Other Docs Getting Started

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

The Evaluation Edition
Clarion for Windows.

No coding. No compromise. Powerful compiled
applications for a broad range of database users:
novices, power users, and professional developers.

You’ll be able to create a 32-bit, multi-threaded
application for your existing database in just one
hour by following this guide through exercise one.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

A Brief Preface
Clarion for Windows rises to “the next level” of Rapid
Application Development—a new tier of programmer-
friendly tools that maximize productivity, power, and
performance.

The level of automation in creating applications with
Clarion for Windows surpasses other RAD tools.
With other tools, you create the user interface
visually, but you still have to hand code the behavior
of your application. Clarion produces a complete
business solution for you: immediately and
automatically.

Clarion for Windows
4-color brochure

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Start Where Others Leave Off
The Clarion for Windows Application Wizard builds
complex applications with no intervention necessary.
Your starting point is a full-featured application.

Migrating to Windows the Easy Way:
Let Your Data Do the Work

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Create Applications From Data
From your database dictionary, which stores your
data model plus optional pre-formatting options, the
Wizard creates multi-threaded, multiple-order browse
lists, with tab-selectable sort orders. You can take a
database dictionary with dozens of files or tables
defined, then generate and compile an multi-
threaded application with literally hundreds of
procedures—cleanly.

You just run the Application Wizard—it requires just
a few clicks—then press the Make button.

User’s Guide
Application Wizard

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Create Applications From Data
Your app contains synchronized parent-child dialogs
with an update form for the parent on one tab, and a
listbox displaying related child records on another.
Reports for every file.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

First 32-Bit RAD Compiler
Clarion, which was the first 16-bit RAD compiler, is
the first RAD tool to compile applications in the new
Win 32 Portable Executable format. It actually
contains two compilers—a 16-bit compiler, and a 32-
bit compiler. Clarion for Windows 1.5 is an
evolutionary tool for database programmers who
expect to support both 16 and 32-bit Windows for a
transitional period.

No matter what version of Windows you develop
for—Windows 3.x, Windows 95, or Windows NT—
Clarion for Windows increases your productivity,
allows you to deliver the same app to each platform
while maintaining a single project, and helps you
produce small, fast, royalty-free, native executables.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

(Windows) Platform Independence
As a developer, you don’t have to worry about what
version of Windows either your end users—or you—
run. You can build apps for any platform, from any
platform, simply by selecting an option.

Clarion clones features across 16 and 32-bit
Windows. Windows 3.x end users can be provided a
Windows 95 look and feel via 16-bit versions of
controls such as property sheets, tree, and progress
controls. Windows 95 and Windows NT applications
can safely and reliably incorporate 16-bit .VBX
controls.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Database Independence
Clarion’s replaceable database drivers allow you to
connect to data in virtually any DBMS or file
format. You can use direct drivers, ODBC, or optional
SQL drivers. The Clarion database access grammar
produces database independence with native mode
performance. It accomplishes this with a compact
and expressive syntax.

Choosing a file driver is as simple as specifying a
choice in a file structure. When generating
applications, you choose a driver from a drop down
list in the Data Dictionary. You can even import a file
definition from an existing data file, just by
selecting a file in an Open File dialog.

User’s Guide:
Database Drivers

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Database Independence
There’s no huge, external database engine. You either
ship the file driver as an external .DLL (between 75
and 250Kb), or compile it directly into your
executable.

Tutorial

Reviews

Introduction

Manuals

HyperText Node -1-
Here's several suggested topics you can jump to
from here. Just click on the text description below:

❏ Next in Sequence
❏ What is Clarion for Windows?
❏ Development Environment Features
❏ How Should You Evaluate?
❏ System Requirements
❏ Setting Up
❏ Development Environment Architecture
❏ Pre-Planning Your App With the Data Dictionary
❏ The Browse-Form-Browse Paradigm
❏ Development Methodology
❏ The Clarion Language
❏ Competitive Analysis
❏ Competitive Grids
❏ Hypertext Hub

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

The Evaluation Edition
Thank you for investing your time to evaluate the
Evaluation Edition of Clarion for Windows. This
section has three goals:

❏ To help you identify how Clarion for Windows’ key
benefits—productivity, performance, and easy
project maintenance—fit into your application
development needs.

❏ To briefly introduce the parts of the development
environment.

❏ To outline the contents of this guide and the
additional materials on the CD. This will help you
quickly identify what you need to know, and
provide a guide to setting up the Evaluation
edition of CW.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Better, Faster, Smarter
Clarion for Windows can do three things for you: help
you work better; help you work faster; help you work
smarter.

■ Working Better: are you an independent software
developer who wants to write more powerful
programs? Programs with improved functionality
whose impact on your end users can be
measured? Programs that deliver the business
solution the spec requires?

The template system is an intelligent code generator.
Its design-time user interface helps you quickly
select properties and functionality. The Clarion
language allows you to custom code a solution
unique to your business problem—and execute it at
any point within a template procedure.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Better, Faster, Smarter
■ Working Faster: are you a corporate programmer

who wants to increase productivity by delivering
programs faster? Do you need a tool to break up
that application backlog? Do you have to solve a
business problem now?

“Push-button programming” frees you to concentrate
on the data model and business rules. By
emphasizing pre-planning and design within the
database dictionary, it’s easy to generate robust
business database apps with a common look and
feel. The dictionary can store pre-formatting options,
such as specifying a specific type of window control
for a particular field. You set a common look for as
many applications as will be made to maintain the
same set of tables, since you can create many
applications from a single dictionary.Software

Manufacturing

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Better, Faster, Smarter
■ Working Smarter: is long term program

maintenance a big headache? Is your project
flexible enough to grow with end user demands,
or does it hit the wall when the app changes
from spec to delivery? What are the net
results—return on investment, time to market,
savings, user/customer satisfaction, quality—
over the project’s life cycle?

Clarion achieves a level of maintainability that other
RAD tools can’t match. Rather than using one-way
wizards to define a database, as other tools do,
changes made in the data dictionary migrate via live
links to the application file. If you have to, for
example, add a field to the database, you just
regenerate the code and recompile. Using other RAD
tools, it’s often best to start over from scratch.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

The Evaluation Edition
The CD contains a special version of Clarion for
Windows.

Its limits are splash screen disclaimers on the
applications you develop, and a limit on the data files
you can edit. If you open a file or table, from any
data source, with more than 100 records, you’ll
automatically open it in Read Only mode. Any less,
and you can edit records normally.

The only other limit is that the applications you
develop require that CWRUN16.DLL or CWRUN32.DLL
be available in the path. The full version of Clarion for
Windows allows you to link the functions from these
libraries directly into your executables, allowing you
to create even smaller applications.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

The Documentation
The Evaluation Edition CD also contains all the
documentation, in Adobe Acrobat Viewer documents.
There is additional literature—product reviews,
newsletters, and other materials—to help you learn
more about Clarion for Windows, and present third
party views of it. There are also multimedia
presentations that show you the development
environment, plus demos of third party tools and of
finished Clarion applications.

The “Hub” is the “center” of this document. It helps
you jump to other documents. The “nodes” divide
each section. They help you jump to important
topics. To “jump” to another section, click on one of
the icons on the side. To switch between full window
and window viewing (the later includes more
navigational controls), press ESC, and CTRL-SHIFT-L.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

We Want to Show You Clarion
We want to show you as much as we possibly can
with this CD. We think Clarion for Windows is a more
efficient way to develop Windows applications. Many
of our longtime developers tell us they regard Clarion
as their secret weapon that out-produces the
competition every time. Now we’d like to offer this
secret weapon to you.

The printed insert you received with the Evaluation
Edition includes a special offer to purchase Clarion
for Windows. It’s an investment that gives you the
power to be a better, faster, smarter programmer—
and the Evaluation Edition will prove it!

The Clarion for
Windows Box

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

What is Clarion for Windows? -1-
Clarion for Windows 1.0 was released in the fall of
1994. It was the first Rapid Application Development
system for Windows featuring an optimizing compiler.
Its replaceable database drivers and full-featured
data dictionary support powerful database
applications for either local or Client/Server
environments. The Clarion language, the only true
Fourth Generation Language in a Windows RAD tool,
is easy to master, and supports easy code
maintenance.

Origins of the
Clarion Language

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

What is Clarion for Windows? -2-
The Evaluation Edition features Clarion for Windows
1.5, released in the Summer of 1995. It adds a 32-
bit compiler, and many new productivity features,
including the Application Wizard. The Application
Wizard builds full-featured applications based the
database description stored in the data dictionary.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

What is Clarion for Windows? -3-
The Clarion for Windows Application Generator
creates powerful, fully customizable applications
quickly, through the use of templates. Clarion
Templates provide functionality equivalent to the
base object classes in object oriented programming
environments; they contain pre-written data and
code. Clarion templates, in addition, include another
design-time layer consisting of a user interface,
enabling the Clarion developer to customize their
properties and functionality without knowing
anything about underlying code. Clarion
programmers can easily create their own templates.
Clarion developers enjoy the benefit of high code
reusability, usually associated with OOP development
tools, yet also enjoy the gentler learning curve of a
traditional structured programming language with a
seamless, built-in database grammar.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

What is Clarion for Windows? -4-
As a development environment, Clarion Templates
distinguish Clarion for Windows from other RAD
tools by the depth of functionality contained within
the templates. Other RAD tools feature visual
design tools which allow the developer to place a
user interface control, such as a button. Yet the
developer must write code to implement the behavior
required when the end user, for example, presses the
button. Clarion templates contain both the user
interface control and the executable code to make
that control a complete business solution, such as
a file lookup or a record locator. In effect, Clarion for
Windows is “the next level” in Rapid Application
Development. It requires significantly less coding
than other RAD tools when used to create business-
oriented applications.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

What is Clarion for Windows? -5-
Clarion also distinguishes itself by its dynamic links
between the data dictionary and application
generator. Other tools that rely on a database or app
wizard work only one way—the wizard sets up the
application, but cannot be called a second time to
change an option. With Clarion, you can change an
option in the data dictionary any time. For its entire
life cycle, a Clarion app is automatically updated
whenever its data dictionary changes. Besides pre-
formatting controls, you can also modify Referential
Integrity Constraints, Field Validity rules, and other
options. If you need to change the database design,
(sometimes a nightmare with other RAD tools), with
Clarion you simply add a field to the dictionary, open
the window you want to display the new field in, then
populate it. Clarion even generates an executable to
convert your existing data file to the new structure.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

What is Clarion for Windows? -6-
Clarion for Windows also supports the use of various
Windows 95 controls, as well as .VBX controls—no
matter whether the end user is running Windows 3.x,
Windows 95, or Windows NT. For Windows 3.x, Clarion
clones the resources necessary to support controls
such as tree controls, tool tips, progress bars and
others. For Windows 95 and Windows NT, it provides a
special .VBX server, which runs a 16-bit .VBX safely
and reliably in the 32-bit Windows environment.

Applications developed with Clarion for Windows are
small, fast, stable, and royalty-free.

That’s just the short description. Here’s how you can
apply the Clarion solution to your development
needs—how you can work better, faster, smarter.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Built-in Productivity
■ Visual Design Tools help you create your user

interface quicker. Many RAD tools let you design
windows and place controls just as easily. Where
Clarion for Windows surpasses the competition
is the amount of functionality that comes built
into the templates.

User’s Guide:
The Window Formatter

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Built-in Reusability
■ Reusable Components—Clarion Templates—

mean less code for you to write. A recent
InfoWorld column (5/8/95) described the broken
promises of some other RAD tools, specifically,
just how much code you have to write to create
an app that actually does something: “but once
the controls are laid out, Visual Basic turns into
Manual Basic, and the oracle at Delphi starts
predicting a long coding session in your future.”
(Nicholas Petreley, p. 103).

InfoWorld Column:
CW vs. Delphi 8/14/95

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Be More Productive
Clarion templates provide pre-packaged, easy-to-
use, easy-to-customize functionality. Common aids
for business applications, such as lookup tables and
record locators, require zero coding. Clarion requires
significantly less coding than other RAD tools when
used to create business-oriented applications.

The high degree of template functionality helps you
hit the ground running. The tutorial application, for
example, loads existing data files into a data
dictionary. You simply define the relationship. Then you
use the Application Wizard. With one button press,
you create a full featured application, including
browses, update forms, and reports. Developers who
have never seen Clarion before can create this app
from scratch within one hour after tearing the
shrink wrap off the package.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Write Less Code
You set template properties by right-clicking an
associated control, then checking a box, or choosing
from a list; not by looking up obscure syntax in a
language reference manual. You get complete access
to template properties in a “come-and-get-you”
interface.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Never Write Code Twice
The application generator evaluates the template
options you specify, then generates Clarion language
code, which is compiled to create your executable.
With a reasonable investment of time, you can add
to the standard template set by writing your own
custom templates to provide solutions to your very
specific business needs. You never have to write the
same code twice. Maximum code reuse means higher
productivity—for you, and for other members of
your programming team.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Apps That Perform Better
■ Optimizing Compiler: it’s a seamless path from

prototype to production; from database design
to deployment. No more having to use one tool
to produce a prototype, and another for the
actual application. Clarion’s optimizing compiler
produces applications as fast as any 3GL—in a
fraction of the time. We use the same “back-end”
compiler for our C, C++ and Modula-2
products—the .OBJ files created by Clarion are
indistinguishable from those created by our
other language products. You get conditional
compilation and smart linking, helping you create
“lean, mean” executables or dynamic link libraries,
royalty-free, and callable from other Windows
applications.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Apps That Perform Better
■ The Clarion Language: there’s a rich, powerful

language underneath—and you have complete
access to it. Clarion is a structured, compact
and expressive fourth generation language. It’s
easy to learn. If you are fluent in any
conventional programming language from COBOL
to Xbase, you can read Clarion.

Clarion Language
Style Guide

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Your Code Works With the Template
Each template contains many points at which you
can embed a Clarion language statement (or a long
block of code, for that matter). If a template
contains a window, you can add your custom code
“before opening the window.” Your statement is placed
into the generated source code, in-between lines
generated from the Clarion template. You’ll never “hit
the wall” because you have complete control—you
work with the code; not around it.

The Clarion language provides the ease of
development and gentle learning curve of a true
fourth generation language. Yet it’s extensible and
flexible enough to support any call to the Windows
API, or to any dynamic link library. Then the Clarion
for Windows optimizing compiler takes your code and
creates Intel machine code.Template Language Reference:

Introduction

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Maintain Projects More Efficiently
■ A professional strength data dictionary gives

you power, flexibility, and connectivity. The data
dictionary and the application generator work
together—make a change in the dictionary, and
the application generator automatically updates
your application.

The templates support referential integrity as many
levels deep as you specify in the database dictionary.
Choose a replaceable database driver to connect to
standard PC data file format, Btrieve Client/Server,
or ODBC for other Client/Server DBMS’s (AS/400,
Oracle, and other C/S drivers are available
separately). You can import file definitions from
existing tables or files.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Maintain Projects More Efficiently
■ Template options are always available. Unlike one-

way wizards, you can always change a template
option, regenerate code, and recompile. You never
have to go back to square one when the client
tells you to make a change!

■ The “readability” of the Clarion language makes
code maintenance easier. Whether you need to
revise code you wrote six months ago, or you
need to look over another programmer’s code, the
expressiveness of the Clarion language saves
time.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Development Environment
When working with the Evaluation Edition , you’ll be
running the development environment from your hard
drive (it requires 8-22MB, depending on the options
you select). All the documentation will remain on the
CD. After you’ve finished the evaluation, you can
simply delete one directory, and three lines in your
WIN.INI to clean up completely (details in the
section on Setting Up). These are the development
environment components you’ll expand and copy to
your hard drive:

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

System Requirements
You can run the Development Environment on any
system meeting the minimum system requirements
for Microsoft Windows 3.x, Microsoft Windows 95, or
Microsoft Windows NT 3.51. For better performance,
we suggest your system have at least 8MB RAM, 12
MB RAM, or 16 MB RAM for these respective
operating systems.

You’ll also need between 8 and 22MB free hard disk
space, depending on the Setup options you select.

The applications you develop will run comfortably on
even those machines meeting only the minimum
requirements for these operating systems.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Visual Design Tools
✓ The Window Formatter supports all standard

window controls, plus .VBX controls, with direct
connections to variables or database fields
defined in the data dictionary. It supports two-
way development—you can flip between visually
editing the controls, or source code editing.

✓ The Report Formatter allows you to visually
create and customize reports. It supports
preview, multiple grouping, and multiple details.
No additional runtime modules or external
report writers are necessary. Reports are
compiled into your executable, and it all appears
seamless to the end user

User’s Guide:
Report Formatter

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Application Generator/Templates
✓ Tried and true pre-written code, an intelligent

interface for customizing it, automatic links to
the database dictionary, and a smart code
generator that generates only the code needed
to support the functionality you select.

✓ The standard templates include a browse
(listbox page-loaded from database records,
using filters or range limits); update form
(updates field data upon insert, change or
delete record); frame (an MDI frame, with
automatic window, menu, and toolbar
management, plus thread capability to support
multiple record buffers); and report (a default
report with automatic support for collecting and
formatting data from a database, including
print preview.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Application Generator/Templates
✓ The Application Tree—a logical procedure call

tree—is the center of the Clarion for Windows
development environment. It provides a
hierarchical list of the procedures that make up
your program. As you add functionality, for
example by defining a new menu item, a new
procedure is added and marked as “To Do.” The
Application Tree both describes and organizes
your project.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Database Dictionary
✓ The Database Dictionary organizes your

application’s data files, their relationships,
referential integrity constraints, validity checking
rules, even pre-formatting controls referencing
database fields. Changes made to the dictionary
update the application.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Database Drivers
✓ The drivers are compact dynamic link libraries;

for a given file format, you ship the .DLL
(typically 100K) with the application. The drivers
that come with the product include ASCII, BASIC
(comma or tab-delimited), Btrieve, Clarion,
Clipper, dBase III and IV, FoxPro, DOS (binary), ODBC,
Paradox, and TopSpeed. SQL drivers are available
separately.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Reports
✓ Built in programmable report writer creates

reports which are compiled into the executable.
Works with Report Formatter and report
template. Supports complete control over the
Windows printer device settings.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Clarion Language
✓ Clarion is a structured, compact, expressive

fourth generation language. It’s easy to read,
easy to write, and easy to learn.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Clarion Template Language
✓ The Clarion Template Language is a meta-set of

the Clarion language. It controls the
development environment, gathers design
specifications, and generates source code. In
addition to using the standard templates, you
can write your own templates, or purchase
additional templates from third party vendors.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Compiler/Project System
✓ The compiler produces small, fast, royalty-free

executables. Most Clarion applications fit on a
single high density disk (database excluded).
They run comfortably on a 4MB machine. The
project system features smart linking (deleting
unused data and code) and smart method
linking (deleting unused virtual methods—the
Clarion library is object-oriented). Clarion
applications load faster than competitive
applications, which may require megabytes of
runtime support for database access or
reporting, even if the executable is compiled. And
as a compiled executable, Clarion for Windows
apps execute literally tens of times faster than
interpreted applications. And, of course, you
distribute your applications royalty-free.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Debugger
✓ Two fully Windows-hosted, full featured

debuggers (one for 16-bit, one for 32-bit)
include support for conditional breakpoints and
watchpoints, and a spy window for Windows
messages.

Some features that are extra in other RAD systems
are standard in the Clarion for Windows debugger,
including assembly language listings, machine
register views, debugging support for dynamic link
libraries, and breakpoint support for the debug
version of Windows.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Documentation
✓ Over one thousand pages including a

comprehensive User’s Guide, Language Reference,
Template Language Reference, and Getting
Started tutorial. For the Evaluation Edition, we’ve
provided all this to you with the Adobe Acrobat
Reader. Additionally, you’ll find comprehensive on-
line help.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

How Should You Evaluate?
The CD contains a special version of Clarion for
Windows. Its only limits are splash screen
disclaimers on the applications you develop, and a
limit on the data files you can edit. If you open a file
or table, from any data source, with more than 100
records, you’ll automatically open it in Read Only
mode. Any less, and you can edit records normally.

So go ahead, judge us on the basis of what you see
here.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

How Should You Evaluate?
Here are a few questions to bear in mind as you
evaluate:

❏ Can you create an application faster than with
your present development tools?

❏ Which tool creates the faster app?
❏ Which tool creates the smaller app?
❏ Which app costs less to distribute?
❏ Which app is more stable?
❏ Which development environment is more stable?
❏ Which app requires less resources?
❏ Which source code is easier for you to read?
❏ Which source code is easier for others to read?

—more—

Clarion for Windows
4-Color Brochure

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

How Should You Evaluate?
Here are a few more questions to bear in mind as you
evaluate:

❏ Which development environment supports
greater code reusability?

❏ Which development environment allows you to
organize and control your project best?

❏ Which development environment best connects
to your data?

❏ Which development environment has the
strongest database dictionary?

❏ Which development environment gives you the
overall speed and flexibility you need to create
the best solutions to a wide array of your end
users’ needs?

Clarion vs. Delphi

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

This Guide
■ This section introduces Clarion for Windows,

summarizes its features, discusses your
evaluation process, and provides instructions for
setting up the Evaluation Edition.

■ Section two, the tutorial, helps you build and
customize a simple application.

■ The third section provides more information
about Clarion for Windows. This includes the
development environment architecture, the
general design of Clarion for Windows
applications, plus discussions of the Clarion
language and Clarion template language.

■ The fourth section discusses how Clarion for
Windows compares to the competition.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Setting Up
The Setup program, in the root directory of the CD,
decompresses and copies the Clarion for Windows
Evaluation Edition files to your hard drive:

■ It provides options for installing various
components such as example files.

■ It asks before updating the PATH statement in
your AUTOEXEC.BAT file to include the Clarion for
Windows directory.

■ It installs icons for the development environment
and Acrobat Reader documents (the latter
remain on the CD).

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Starting Setup
To start the Clarion for Windows Setup program:

1. Insert the CD into your CD-ROM drive.

2. From the Start menu, choose Run, or from
Program Manager, File Manager, or other shell
program capable of launching a program, choose
File ➤ Run.

3. Type D:\SETUP (where D: is the letter of your CD-
ROM drive) in the Run dialog, and press the OK
button.

The Setup program provides an introductory screen
and other text information.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Setup Options -1-
1. Choose the Setup options by checking on the

boxes you want to install, then press the OK
button.

2. Specify the target directory, then press the OK
button.

Setup will install the main components of the IDE to
a BIN subdirectory one level below the target
directory you specify in the dialog. The Clarion for
Windows Setup program installs all files to the
target directory, and subdirectories beneath it. It
installs no files to any other directory.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Setup Options -2-
During the installation, progress bars will display as
Setup copies the files.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Setup Options -3-
3. Choose Yes or No when Setup asks whether to

modify the PATH for you.

The Clarion for Windows IDE requires that the BIN
subdirectory be listed in the PATH environment
variable. If you choose No, you must edit the
AUTOEXEC.BAT file manually. The only other change to
any of your system files is that Clarion for Windows
appends its own section to WIN.INI when you run it
for the first time; this section is only a few lines
long.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Setup Options -4-
4. Choose Yes or No when Setup asks whether to

display the ReadMe file.

If you don’t wish to read it right away, you’ll find an
icon for it in the Program Manager group which Setup
creates for you. We recommend reading it as soon as
Setup has copied all the files.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Setup Options -5-
5. Follow the directions for installing Adobe Acrobat

Reader and/or Video for Windows.

These are separate setup programs provided by
Adobe and Microsoft, respectively. They provide
support for viewing documentation and demos on
the CD. They were the most up-to-date versions
available of both these products, as of October, 1995.
The Microsoft Video for Windows setup is only
necessary for Windows 3.1 users.

6. Press the OK button when Setup is done.

Hub

Node

Tutorial

Architecture

Prototype

Language

Competitive

Starting Clarion for Windows
To run Clarion for Windows, locate the Clarion for
Windows icon in the Clarion for Windows program
group, and double-click it:

The Clarion for Windows IDE appears, ready for you
to begin work.

Tutorial

Reviews

Introduction

Manuals

HyperText Node -2-
Here's several suggested topics you can jump to
from here. Just click on the text description below:

❏ Next in Sequence
❏ A Brief Preface
❏ What is Clarion for Windows?
❏ Code Reusability and Productivity
❏ Development Environment Features
❏ How Should You Evaluate?
❏ Development Flowchart
❏ Pre-Planning Your App With the Data Dictionary
❏ How It All Works Together
❏ The Browse-Form-Browse Paradigm
❏ The Clarion Language
❏ Competitive Analysis
❏ Competitive Grids
❏ Hypertext Hub

Hub
Tutorial Exercise 1
In this exercise, you’ll create a new database
dictionary, set several preformatting options, define a
relationship and set Referential Integrity
constraints, then use the Application Wizard to
generate and run either a 32-bit or 16-bit
application depending on your operating system. The
applications will access a TopSpeed data file that’s
been set up and “pre-loaded” with data for you.

Hub
Rapid Application Development
You should be able to do this within 20 minutes.

❏ Can you create an application faster than
with your current development tools?

✓ Yes. This section shows you how.

Hub
The Data
We’ll take two tables which are part of a larger Order/
Entry database, the whole of which includes five files.
These tables reside in one physical file, in the
\CWEVAL\TUTOR01 directory.

The data file is in the TopSpeed file format. The
TopSpeed file format is one of the so-called
“superfile” formats: it can include multiple tables
(and keys) residing in a single physical DOS file. It
also automatically compresses memo fields.

The file already contains data, so that when you run
the application, you’ll be able to “play with” some
existing data.

Hub
Skills
In this exercise, you’ll learn to:

❏ Import file definitions from an existing file. You’ll
be able to use this skill to create applications
immediately from databases that already exist
on your hard drive or network.

❏ Preformat controls by field. You can specify that
a particular database field should always have a
special control (such as an option box with radio
buttons) or a special font and font style for an
entry-type control. Since you can use a
database dictionary to create many
applications that maintain the same data, this
not only saves time, but provides a common look
and feel for the applications that maintain the
same database.

Hub
Skills
You’ll also learn to:

❏ Define Relationships

❏ Define Referential Integrity Constraints.

❏ Run the Application Wizard.

❏ Define the target operating system. (You’ll create
a 32-bit application if you run Windows 95 or
Windows NT).

Hub
Reminder
We know it’s difficult to switch back and forth
between the development environment and this
document. That’s why we we’ve provided another
document with all these instructions, formatted to
letter sized paper, ready to print. Open the document
called D:\DOC\TUTOR01.PDF (where D: is your CD-ROM
drive letter) by double-clicking it in Explorer or File
Manager, then print it.

Alternatively, if you’re viewing this in full screen mode,
press ESC to reduce it to a regular window, so that
you can ALT-TAB between this document and the
Clarion for Windows development environment.

Hub
Start the Development Environment
If the development environment is not already
running, open it by choosing it from the Start menu,
or clicking on its Program Manager icon. It should
look like this.

Hub
Create a New Dictionary -1-
❏ From the development environment menu, choose

File ➤ New. In the New dialog, click on the
Dictionary tab. The applications you create with
Clarion for Windows don’t have to be database
applications. But when they are, the best
starting point is the data dictionary.

It’s important that you follow the directions on the
next “page,” so that you create your dictionary in the
subdirectory in which we’ve placed your data files.

Hub
Create a New Dictionary -2-
❏ Type \CWEVAL\TUTOR01\TUTORIAL.DCT in the File

Name box of the New dialog. Then press the
Create button.

You can optionally locate the directory called
\CWEVAL\TUTOR01 in the folders list, walking the
directory tree as necessary by double-clicking
folders; then type in the file name. It’s important to
specify the correct subdirectory, because we already
placed a data file for your application there.

Hub
Import a File Definition -1-
At this point the Dictionary dialog appears, with
your dictionary file name (\CWEVAL\TUTOR01\
TUTORIAL.DCT) at the top. The list at the left holds
file or table names. The list at the right will hold the
relationships you define for those files.

Hub
Import a File Definition -2-
❏ From the development environment menu, choose

File ➤ Import File.

The Select File Driver dialog includes a dropdown list
showing the database drivers installed in your
system. You’ll choose TopSpeed, which is the default.
But you can take a moment to drop down the list to
view the other drivers available.

Hub
Import a File Definition -3-
❏ In the Select File Driver dialog, choose the

TOPSPEED File Driver, then press the OK button.

Hub
Import a File Definition -4-
❏ In the Open TopSpeed File dialog, press the

ellipsis (...) button, then choose
\CWEVAL\TUTOR01\TUTORIAL.TPS in the file dialog
which then appears. Then press the OK button to
close the Open TopSpeed File dialog

Hub
Import a File Definition -5-
Since the file contains multiple tables, you need to
specify the table you want.

❏ In the Select TopSpeed table dialog, choose
Customer (it’s the default, since it’s the first
table listed, and press the OK button.

Hub
Import a File Definition -6-
The Edit File Properties dialog appears. It allows you
to specify options for the FILE structure as a whole.
In this case, the default options specify that the
application should automatically create a new,
empty file if none exists, and that each thread
should have its own separate record buffer.

Hub
Import a File Definition -7-
Also, for your convenience, the Comments tab
provides a text box for notes; so when you’re trying
to remember how you designed your database six
months down the road, you can read your own
explanation!

Hub
Import a File Definition -8
The dictionary editor also allows you to set
checkpoints, so that you can “undo” a revision should
you run into a problem.

❏ Press OK to close the Edit File Properties dialog.

Hub
The Dictionary So Far
So far, the dictionary holds one file definition. That
includes all the field and key definitions.

Hub
Import Second File Definition -1-
Next, you’ll add a second, related file definition. It
will be the Orders table, which is related to the
Customer table by the customer number.

❏ From the development environment menu, choose
File ➤ Import File.

❏ In the Select File Driver dialog, choose the
TOPSPEED File Driver, then press the OK button.

Hub
Import Second File Definition -2-
❏ In the Open TopSpeed File dialog, press the

ellipsis (...) button, then choose
\CWEVAL\TUTOR01\TUTORIAL.TPS in the file dialog
which then appears. Then press the OK button to
close the Open TopSpeed File dialog.

Hub
Import Second File Definition -3-
Since the file contains multiple tables, you need to
specify the table you want.

❏ In the Select TopSpeed table dialog, choose
Orders, and press the OK button.

Hub
Import Second File Definition -4-
The Edit File Properties dialog appears. Accept the
defaults for the Orders table.

❏ Press OK to close the Edit File Properties dialog.

Hub
The Dictionary So Far
Now, the dictionary holds two file definitions. That
includes all the field and key definitions.

Hub
Set Auto-Increase Keys -1-
Key attributes include primary, exclude null, and
others. You’ll set the customer number key to auto-
number, which tells the Application Generator you
want to generate code to auto-increment the key
value for any new records added to the database.

❏ With the Orders file selected, press the Field/
Keys button, opening the Fields/Key Definition
dialog.

Hub
Set Auto-Increase Keys -2-
❏ Select the Keys tab. The BYCUSTOMER key should

be selected.

❏ Press the Properties button. The Edit Key
Properties dialog appears.

Hub
Set Auto-Increase Keys -3-
❏ Select the Attributes tab in the Edit Key

Properties dialog.

❏ Check the Auto Number box.

Hub
Set Auto-Increase Keys -4-
❏ Press the OK button to close the Edit Key

Properties dialog.

❏ Press the Close button to close the Field/Key
Definition dialog. This returns you to the
Dictionary dialog.

Hub
Set Auto-Increase Keys -5-
Now you need to set the Auto-Number attribute for
the Customer file.

❏ Select the Customer file in the Dictionary
dialog.

❏ Press the Fields/Keys button. This displays the
Field/Key Definition dialog.

Hub
Set Auto-Increase Keys -6-
❏ Select the Keys tab. The BYNUMBER key should

be selected.

❏ Press the Properties button. The Edit Key
Properties dialog appears.

Hub
Set Auto-Increase Keys -7-
❏ Select the Attributes tab in the Edit Key

Properties dialog.

❏ Check the Auto Number box.

Hub
Set Auto-Increase Keys -8-
❏ Press the OK button to close the Edit Key

Properties dialog.

❏ Press the Close button to close the Field/Key
Definition dialog. This returns you to the
Dictionary dialog.

❏ Choose File ➤ Save, to save your work so far.

Hub
Pre-Formatting Controls
You can specify that a particular database field
should always have a special control (such as an
option box with radio buttons) or a special font and
font style for an entry-type control. Since you can
use a database dictionary to create many
applications that maintain the same data, this not
only saves time, but provides a common look and feel
for the applications that maintain the same
database.

❏ Which development environment supports
greater code reusability?

✓ Clarion. By storing application options in the
database dictionary, you have a head start on
all projects that reference the same
database.

Hub
Pre-Formatting A Control
The Orders file has a field called Carrier, which holds a
string value describing how the order should be
shipped. We’ll pre-define this field in the dictionary,
so that the Application Wizard knows that we want
to create radio buttons that offer the end user a
choice of “Mail,” “UPS,” or “Other.” We’ll set the default
value as “Mail.”

Hub
Pre-Formatting the Carrier Field -1-
❏ Select the Orders file in the Dictionary dialog.

❏ Press the Fields/Keys button. This displays the
Field/Key Definition dialog.

❏ Select the Carrier field.

Hub
Pre-Formatting the Carrier Field -2-
❏ With the Carrier field selected, press the

Properties button. The Edit Field Properties dialog
appears. This is the dialog for storing all the
information about a given field. The General tab
sets the basic properties, including the field
name and data type. This is a one-byte field.

❏ Click on the Validity Checks tab.

Hub
Pre-Formatting the Carrier Field -3-
You’ll take advantage of a shortcut. When you define
a list of allowable values in the Validity Checks, the
Dictionary Editor automatically pre-formats the
control as an option box with radio buttons.

Additionally, you’ll take advantage of another feature
to save space in the data file. For a one-byte field,
your application will automatically store only the
first character of the values you define in the list (of
course, you must be sure that they’re unique) in the
data file.

❏ Select the Must be in List radio button on the
Validity Checks sheet.

Hub
Pre-Formatting the Carrier Field -4-
❏ Type the following in the Choices box, including

the pipe symbols, which separate the valid choice
values:

Mail|UPS|Other
“No selection” is a valid radio button choice, and
the end user will see exactly that for each new
record unless you specify otherwise. You do want
to set a default value for the carrier type.

Hub
Pre-Formatting the Carrier Field -5-
❏ Click on the Attributes tab.

❏ Type the following in the Initial Values box. Be sure
to enclose the word between single quotes:

'Mail'

Hub
Pre-Formatting the Carrier Field -6-
❏ You’ll just check your work. Click on the Window

tab. This stores your control choices for the
update form that the Application Wizard will
generate for you.

It should look like the illustration.

Hub
Pre-Formatting the Carrier Field -7-
Notice that you could also have specified a drop
down list box, or various other entry controls. If you
were to press the Properties button on this sheet,
you’d find additional options, such as the ability to
specify the font, font size, and font style for the
control. For now, don’t change the options.

❏ Press the OK button to close the Edit Field
Properties dialog.

❏ Press the Close button to close the Field/Key
definition dialog.

❏ Choose File ➤ Save, to save your work so far.

Hub
Pre-Formatting a Field Picture
A field picture formats a value for a window or report
control. For example, you can store a long value in a
database with a value of 2710 hex (10,000 decimal).
A currency picture might format the value so that it
appears in an entry control as $10,000.00, to cite
only one example. A numeric picture could format it
to appear as 10000, 10,000, or maybe even
000000000000000000000000010000, and
others, depending on the format picture you choose.

You’ll use a pattern picture to format a number
stored in the phone field. In the data file, it’s stored
in the format 2125551212. You’ll format it to appear
to the end user as (212) 555-1212.

Hub
Pre-Formatting the Phone Field -1-
❏ Select the Customer file in the Dictionary

dialog.

❏ Press the Fields/Keys button. This displays the
Field/Key Definition dialog.

❏ Select the Phone field.

Hub
Pre-Formatting the Phone Field -2-
❏ With the Phone field selected, press the

Properties button.

❏ Type the following in the Screen Picture edit box,
on the General sheet. Don’t forget the space
after the area code parentheses.

@P(###) ###-####P

Hub
Pre-Formatting the Phone Field -3-
❏ Press the OK button to close the Edit Field

Properties dialog.

❏ Press the Close button to close the Field/Key
definition dialog.

❏ Choose File ➤ Save, to save your work so far.

Hub
Defining the File Relationship
For the two files used in this example, you’ll only need
to set one relationship. Customer is the parent, and
Orders is the child (there may be one customer for
many orders).

The following topics will define the relationship, and
set the Referential Integrity constraints. Referential
Integrity is the means by which the database
relationships are maintained. Verifying unique values
for the fields comprising the primary key, and
excluding null values are part of this process.
Cascading a key value change in a parent record to
its related children, or deleting the child records when
a parent is deleted are also part of the process.

Hub
Referential Integrity Constraints
Clarion implements RI checks in the generated code.
This allows you to support RI for any database. You
can also specify no RI checks, and let the DBMS
handle it for you, where applicable. This option is very
convenient, for example, for a company with an older
AS/400 database. The older software didn’t
support RI; so you can have your Clarion application
generate the code. If you upgrade the DBMS
software to a newer version in which the AS/400
does handle the RI, you simply “uncheck” the RI
options in your Clarion app, regenerate, and recompile.

Hub
Referential Integrity Constraints
❏ Which development environment has the

strongest data dictionary?
✓ Clarion. It�s flexible, and the development

environment maintains live links between it
and your application files. Your applications
adapt as your business needs change. All
you need to do is update the data dictionary,
regenerate the application, and recompile.

Hub
Setting the Relationship -1-
❏ Select the Customer file in the Dictionary

dialog.

❏ Press the Add Relation button. The New
Relationship Properties dialog appears.

Hub
Setting the Relationship -2-
The Customer file appears at the top of the New
Relationship Properties dialog.

❏ Select the BYNUMBER key in the Primary Key
drop-down list.

❏ Select ORDERS in the Related File drop-down
list.

❏ Select BYCUSTOMER from the Foreign Key drop-
down list.

Hub
Setting the Relationship -3-
This is how the New Relationship Properties dialog
looks so far.

Hub
Setting the Relationship -4-
The Orders file key has two components, while the
Customer file key has one. You don’t have to worry
about it; the generated code will take care of
everything for you.

❏ Press the Map By Name button to define the
relationship by field. This matches the customer
number fields in the Customer and Orders tables.

Hub
Setting the Relationship -5-
Set the RI constraint options. You’ll choose Cascade
on Update. This would update child records when you
update the key value for a parent record. In this case,
if you change the customer number in the customer
file, it would update the number in the Order file.

❏ Select Cascade from the On Update drop-down
list.

Hub
Setting the Relationship -6-
You’ll choose Restrict on Delete. This would disallow
the deletion of a parent record if there are related
children. In this case, if the end user attempts to
delete a customer record with related orders, the
application would disallow it.

❏ Select Restrict from the On Delete drop-down
list.

Hub
Close the Dictionary -1-
❏ Press the OK button to close the New

Relationship Properties dialog.

You’re done with the dictionary. You’ve imported
definitions from existing data files, pre-formatted
controls, and set RI options. The dictionary should
look like this:

Hub
Close the Dictionary -2-
❏ Choose File ➤ Save, to save your dictionary.

❏ Press the Close button to close the Dictionary
dialog.

Hub
The Application Wizard
The Application Wizard will read your data dictionary
and create an application for its maintenance. It will
include browses for navigating the file, update forms,
and reports.

❏ Choose File ➤ New from the development
environment menu.

❏ If not already selected, click on the Application
tab.

Hub
New Application
❏ Be sure that the Use Quick Start Wizard check

box is unchecked. Quick Start is a convenience
feature that lays out a data table quickly; but
since we imported existing files, we don’t need it
for this example.

❏ Type \CWEVAL\TUTOR01\TUTORIAL.APP in the File
Name box.

❏ Press the Create button.

Hub
The Application Properties Dialog -1-
This dialog specifies the name of the .APP file, which
stores your application description. You must specify
the data dictionary name.

❏ First make sure the Application Wizard check box
is checked.

❏ Press the ellipsis button (...) next to the
Dictionary File box.

❏ Choose \CWEVAL\TUTOR01\TUTORIAL.DCT from the
Select Dictionary dialog, then press the OK
button to close the Select Dictionary dialog.

Hub
The Application Properties Dialog -2-
You’re now ready to create your application file. The
Application Properties dialog should look something
like this.

❏ Press the OK button.

Hub
The Application Wizard -1-
The Application Wizard appears. The first sheet is an
“intro.”

❏ Press the Next button.

Hub
The Application Wizard -2-
The second sheet asks you whether you want the
Application Wizard to process all the files/tables in
your dictionary; i.e., prepare a browse/form/report for
each one.

❏ Press the Next button; there are only two files in
the dictionary, so you want to process them
both.

Hub
The Application Wizard -3-
The third sheet asks whether you want the App
Wizard to overwrite existing procedures in your
application. This allows you to run the Application
Wizard after you’ve done some work in an
application. Unlike one-time-only, one-way wizards in
other RAD tools, you can run Clarion wizards any
time.

❏ Press the Finish button. You don’t have to worry
about anything here.

Hub
The Application Wizard -4-
The Wizard Code Generation Progress appears. The
Application Generator is reading your data
dictionary, and choosing appropriate templates from
the template registry.

❏ Can you create an application faster than
with your current development tools?

✓ Yes. You just created a complex application
from scratch.

Hub
The Application Tree
Your application is ready. You now see the Clarion
Application Tree. It’s a logical procedure call tree. It
organizes your project in a hierarchy of procedures. A
window or a report structure can comprise a
procedure. Likewise, a source code function can also
be a procedure. You can see at a glance how everything
is connected. It’s hard to misplace your code (the
Visual Basic “hidden behind a thousand doors”
syndrome).

Hub
Project Settings -1-
The default target Operating System for the
compiler in the Evaluation Edition is 16-bit Windows
3.1. If you’re using Windows 95 or Windows NT, we’ll
change it with a couple of clicks.

If you’re using Windows 3.1, jump ahead five topics.

Hub
Project Settings -2-
❏ Press the Project button. The Project Editor dialog

appears, with the top level folder selected. The
Project System stores the various compile
options and pragma.

❏ With the top level folder selected, press the
Properties button in the Project Editor dialog.

Hub
Target OS -1-
❏ In the Global Options dialog, choose Windows -

32 bit from the Target OS drop-down list. This
specifies you want to compile an application to
run on Windows 95 or Windows NT.

❏ The full edition of Clarion for Windows allows you
to compile everything into one single executable
file. The Evaluation Edition default—
Standalone—requires that CWRUNxx.DLL be
present when the end user runs your app. Your
executables will dynamically link to many
functions in the .DLL at runtime. This option is
actually helpful for settings where you expect
your end user to have many Clarion-created
applications on the hard drive; it can literally
save megabytes of disk space.

Hub
Target OS -2-
This is how the Global Options dialog should look:

Hub
Get Ready to Compile
❏ Press the OK button to close the Global Options

dialog.

❏ Press the OK button to close the Project Editor
dialog.

Hub
Compile and Run -1-
❏ Choose File ➤ Save to save your work so far.

❏ Press the Make & Run button (sixth tool bar
button from the left on the toolbar). It’s a blue
puff of smoke because Clarion apps leave others
in the dust. A progress window reports the
progress of code generation.

Hub
Compiling
After the Application Generator generates the
Clarion language source code, it’s converted to an
intermediate symbolic language, which in turn is
sent to the back-end TopSpeed compiler, which
compiles it into the executable.

Hub
Running the App -1-
Your app should run once the compile process is over.
(Note for Windows 95 users, just in case: if you
receive a DDE timeout error, you need to make more
memory available for disk swapping. The 32-bit
compiler needs a lot of memory).

❏ Choose Browse ➤ Browse the Customer File from
the menu. (Note: the Application Generator
picks up the menu text from the description in
the dictionary. You only scratched the surface of
the pre-formatting options when you edited the
dictionary.)

Hub
Running the App -2-
Note the formatting for the phone field reflects the
pattern picture you stored in the dictionary.

Hub
Running the App -3-
❏ With customer number 1 selected, press the

Change button. An update form for the
Customer record appears.

Hub
Running the App -4-
Note the zip code was formatted as ##,###. That’s
the default format for a decimal value. You could have
specified a picture of @N05, which would have
formatted it without the commas, and with leading
zeroes. In the next exercise, you’ll work with a
dictionary with all fields pre-formatted. Additionally,
descriptions are provided for files and keys, so that
the menu items and tabs are also pre-formatted.

The code for this update form includes support for
concurrency checking in a networked environment.

Hub
Running the App -5-
❏ Click on the ORDERS tab in the Changing a

Customer Record dialog.

Notice that the Application Wizard automatically
provided a listbox showing all the child order records
for this customer record.

Hub
Running the App -6-
❏ With the Orders tab selected, press the Change

button in the Changing a Customer Record dialog.
❏ Select the General (cont.) tab in the Changing a

Orders Record dialog. Notice the option box and
radio buttons for the Carrier field; that’s the
field you pre-formatted.

Hub
Running the App -7-
Continue experimenting with the application as you
wish. If you set the target OS to 32-bit, you can run
the System Performance Monitor to confirm that
each browse opens a new thread.

Hub
Summary
To summarize, you’ve just created a multi-threaded
app that maintains two related data files, providing
visual “links” between them in the windows that the
end user sees. You pre-formatted a couple of fields in
the data dictionary; those options will migrate to
any additional applications you develop from the
same dictionary, so imagine how much work you save
by preformatting all the fields that need it (e.g., the
zip code field).

Hub
Where to Go From Here
You can either go on to the next exercise, or take a
shot at creating an application from your own data
files. Be sure to work with a copy of your database
first, until you’re more familiar with Clarion.

Do you have dBase or Clipper files? You can use the
direct drivers. For Microsoft Access files, you can use
an ODBC driver (note: you cannot use the Microsoft
Office 4.x Access driver—it’s designed only for use
by Microsoft Office! Be sure your Access ODBC
driver—ODBCJT16.DLL or ODBCJT32.DLL—is
version 2.00.23.17 or higher. Select the driver in File
Manager or Explorer and choose File/Properties).

Hub
The Next Exercise
The next part of the exercise takes a dictionary with
more extensive formatting (based on these two
tables, plus the others from the same database),
and introduces you to the template interface. You’ll
customize some of the windows that the
Application Wizard creates for you, adding even more
functionality.

Hub
Final Note
❏ Which development environment gives you

the overall speed and flexibility you need to
create the best solutions to a wide array of
your end users� needs?

✓ Clarion. You can immediately create an
application to manage a database with an
unlimited number of tables, just from this
short introduction. Remember that we
suggest you work with a copy of your data,
until you learn a little more about Clarion, or
better still, go on to exercise two!

Hub
Tutorial Exercise 2
In this exercise, you’ll work with the template
interface.

We’ll work with the database from exercise one, which
contains the fields necessary for an Order/Entry
application. In that exercise, the Application Wizard
built all the “basics,” according to the database
structure.

You can think of the Application Wizard as an
enormous “head start” for your development
projects. Because once you’ve run the Wizard, the
Application Generator allows you to add further
customizations. And you don’t have to write a single
line of code if you don’t want to.

Hub
The Customizations
Let’s add some “finishing touches” to an application
built on our Order/Entry database. We’ll add a “line
total” for each individual order, and a “grand total” for
the line totals.

Clarion templates help you place user interface
elements that already know how to implement a
complete business solution. You don’t need to attach
the code that totals the records in the list. The
template already contains the code. You just indicate
what needs totalling by choosing from a list.

Hub
The Files
You’ll use a dictionary based on the same database
used in exercise 1. This time, however, it will include all
the tables (five) and additional pre-formatting. For
example, we’ve added descriptions for the keys. These
descriptions are picked up by the Application Wizard,
which places them on the tabs that select the sort
order in a browse window. In the first exercise, when
you saw these tabs, they had semi-cryptic prefix-key
names, such as CUS:BYNUMBER.

You’ll also work with an application file we’ve created
for you. To save you time, we already generated the
.APP file using the Application Wizard. We didn’t
customize it at all. You will, in this exercise.

Hub
Skills
In this exercise, you’ll learn to:

❏ Use the Window Formatter. You’ll resize one control
and add another to an existing window.

❏ Use the Listbox Formatter. You’ll add a new column
to a listbox created by the Application Wizard.

❏ Customize Control Properties via the Template
Interface. You’ll edit the actions of a browse
listbox so that it places a total for one column
in an entry box you’ll place just below the list
box.

❏ Define a Data Variable. You’ll define two new
variables, to keep track of the line total on an
individual order, and the grand total for the order.

Hub
Reminder
We know it’s difficult to switch back and forth
between the development environment and this
document. That’s why we we’ve provided another
document with all these instructions, formatted to
letter sized paper, ready to print. Open the document
called D:\DOC\TUTOR02.PDF (where D: is your CD-
ROM drive letter) by double-clicking it in Explorer or
File Manager, then print it.

Alternatively, if you’re viewing this in full screen mode,
press ESC to reduce it to a regular window, so that
you can ALT-TAB between this document and the
Clarion for Windows development environment.

Hub
Start the Development Environment
If the development is not already running, open it by
choosing it from the Start menu, or clicking on its
Program Manager icon. It should look like this.

Hub
Open the Application File -1-
❏ From the development environment menu, choose

File ➤ Open. In the Open dialog, click on the
Application tab.

❏ Type \CWEVAL\TUTOR02\TUTORIAL.APP in the File
Name box of the Open dialog. Then press the
Open button.

Hub
Open the Application File -2-
Note: You can optionally locate the directory called
\CWEVAL\TUTOR02 in the folders list, walking the
directory tree as necessary by double-clicking
folders, and then type in the file name. It’s important
that you specify the correct subdirectory, because
we already placed an application file there.

Hub
The Application File
The Application Tree dialog appears. You’ll immediately
notice a few differences from the previous
application. You’ll note browse windows, update forms,
and reports for three additional tables, Items,
Products, and States, in addition to the Customer
and Orders tables.

Hub
Set a 32-bit Target
As you recall, the default target Operating System
for the compiler in the Evaluation Edition is 16-bit
Windows 3.1. If you’re using Windows 95 or Windows
NT, you can change it with a couple of clicks.

If you’re using Windows 3.1, jump ahead four topics.

Hub
Project Settings -1-
❏ Press the Project button. The Project Editor dialog

appears, with the top level folder selected. The
Project System stores the various compile
options and pragma.

❏ With the top level folder selected, press the
Properties button in the Project Editor dialog.

Hub
Target OS -2-
❏ In the Global Options dialog, choose Windows -

32 bit from the Target OS drop-down list. This
specifies you want to compile an application to
run on Windows 95 or Windows NT.

❏ The full edition of Clarion for Windows allows you
compile everything into one single executable file.
The Evaluation Edition default—Stand-alone—
requires that CWRUNxx.DLL be present when the
end user runs your app. Your executables will
dynamically link to many functions in the .DLL at
runtime. This option is actually helpful for
settings where you expect your end user to have
many Clarion-created applications on the hard
drive; it can literally save megabytes of disk
space.

Hub
Target OS -3-
This is how the Global Options dialog should look
before you close it.

❏ Press the OK button to close the dialog box.

Hub
Adding a Data Variable
In preparation for adding a total to a browse listbox,
you’ll define a data variable to hold the running
total.

❏ Select the Update Orders form in the
Application Tree (it should be the seventh
procedure from the top, when all the folders are
expanded.

❏ Press the Properties button.

Hub
The Procedure Properties Dialog
The Procedure Properties dialog provides access to all
the resources, files, variables, template code, and
source code for a procedure. You’ll define a new data
variable.

❏ Press the Data button.

Hub
The Local Data Dialog
The Local Data dialog appears. The template code
already defined the variables you see listed. The
variable names are self explanatory; for example,
CurrentTab is the text on the tab of the sheet
currently selected by the end user.

❏ Press the Insert button to define a new variable.

Hub
The New Field Properties Dialog
Name, type, and pre-format your variable:

❏ Type LineTotal (one word) in the Field Name box.
❏ Choose Decimal from the Data Type list. Since

this will hold a currency value, you want to use
integer math.

❏ Type @n$-10.2 in Screen Picture box. This adds
currency formatting for window controls.

❏ Press OK.

Hub
Defining the Second Variable -1-
The New Field Properties dialog reappears, ready to
accept a second variable:

❏ Type OrderTotal (one word) in FieldName box.
❏ Choose Decimal from the data type list.
❏ Type @n$-10.2 in Screen Picture box.
❏ Press OK.

Hub
Defining the Second Variable -2-
The New Field Properties dialog reappears, ready to
accept another variable. Many of the dialogs that
allow you to define files, fields or variables cycle to a
blank dialog immediately after you define an
element, to help you define a series of elements
quickly.

❏ Press Cancel—you’ve defined all the variables
necessary.

Hub
The Procedure Properties Dialog
Press Close to return to the Procedure Properties
dialog. A check next to the Data button indicates
that the procedure includes variables that you’ve
defined.

Hub
Defining a Formula
In this section, we’ll create a formula to provide a
calculated (derived) field in the Items listbox in the
“Changing an Order Record” dialog. This shows you
the formula editor, which can save you hand coding by
automatically constructing Clarion language
functions, including conditional structures.

❏ Press the Formulas button to open the Formula
Editor.

Hub
The Formula Editor -1-
You’ll create a formula name, using a class that the
browse listbox control template already
understands how to handle:

❏ Type LineItems (one word) in the Name box.

❏ Press the ellipsis button (...) next to the Class
box.

Hub
The Formula Editor -2-
There are several formula classes defined for use in
the templates. The Format Browse class calculates a
formula, and places the result in a variable for each
record read into the browse.

❏ Select Format Browse.

Hub
The Formula Editor -3-
❏ Press OK to close the Template Classes dialog.

Now you can indicate the variable that should hold
the formula result for each record read.

❏ Press the ellipsis button (...) next to the Result
box

Hub
The Formula Editor -4-
Choose the variable you previously defined. Notice
that you have access to all variables, files and fields
in the Select dialog.

❏ Select Local Data from the Files list.
❏ Select LineTotal from the Fields list.
❏ Press the Select button.

Hub
The Formula Editor -5-
Now you can create the formula. The Line Total
should be the Quantity of items times the Price per
item. You can use the Select dialog to indicate the
Quantity and Price, which are fields in the Items file.

❏ Press the Data button (in the operands group).
❏ Select Items from the Files list.
❏ Select Item:Quantity from the Fields list.
❏ Press the Select button.

Hub
The Formula Editor -5-
You’ve now chosen one component of the formula. Now
you can add the operator:

❏ Type space-asterisk-space.

Hub
The Formula Editor -5-
Now you can add the second part of the formula:

❏ Press the Data button.

❏ Select Item:Price.

❏ Press the Select button.

Hub
The Formula Editor -6-
Now you can use the Formula Editor to check the
syntax of the statement you’ve constructed.

❏ Press the Check button.

A checkmark will appear next to the statement, to
confirm that the syntax is correct.

Hub
The Formula Editor -7-
❏ Press OK; you only wish to create the single

formula.

You’ve finished the formula. The Formulas dialog will
appear to allow you to enter a second formula.

❏ Press OK.

Hub
The Formula Editor -8-
You can now close the Procedure Properties dialog.

❏ Press OK.

❏ Choose File ➤ Save, to save your work so far.

Hub
Editing a Window
You’ll now use one of the visual design tools—the
Window Formatter—to edit and add controls to a
window.

You’ll add a line total column to the listbox in the
“Changing an Order Record” dialog. You’ll also add an
edit box which automatically holds the grand total
for this column. The edit box will appear below the
listbox.

These controls will reference the data variables you
just created.

Hub
Opening a Window
❏ Locate the Update Orders form in the

Application Tree (it should be the 7th procedure
from the top, when all the folders are expanded.

❏ Right-click on this procedure name, then choose
Window from the popup menu. This allows you to
edit the window contained within the procedure.

Hub
Editing a Window
When you first open the procedure, it should look
something like the one below.

Notice the checkbox. This was provided by a pre-
formatting option in the dictionary, for the Shipped
field.

Hub
Select the Items Tab
This dialog is an update form for the Orders table. It
includes a tab that displays related records in the
Items table (the products that belong to this
particular order, along with their quantity and price).

❏ Click on the Items tab, to bring it to the front.

Hub
Totaling a List Box -1-
First, you’ll add a total for the price column.

❏ Right-click the listbox, and choose List Box
Format. This provides access to the List Box
Formatter, which helps you populate and format
fields and variables for the list box.

Hub
Totaling a List Box -2-
Place the line total field as the last field in the list
box.

❏ Click on the first row of the last column (the
Price column):

Hub
Totaling a List Box -3-
Choose the data variable you defined:

❏ Press the Populate button.
❏ Select Local Data.
❏ Select LineTotal.
❏ Press the Select button.

Hub
Totaling a List Box -2-
The listbox formatter also allows you to format the
field. You can add resizable column lines, split a record
to add a second “row,” set the listbox background
color, and choose other options. For this exercise, just
accept the field options set for the variable
(currency formatting).

❏ Press OK to close the listbox formatter:

Hub
Editing the Window -1-
We need to resize a control in the window, to make
room for another field.

First, a word for developers who haven’t spent a lot
of time with visual design tools: you’re going to
spend a surprising amount of time “touching up”
windows for size, alignment, and generally just
“pretty-ing up.” This is just one of those “facts of
life” related to windows programming, no matter
what tool you use.

The great thing about Clarion for Windows is that
the Application Wizard does so much more “real
programming” that it frees you up for the “pretty-ing
up” time.

Hub
Editing the Window -2-
You need to provide for a blank space below the list
box, in which you’ll place the Order Total field.

❏ Left click on the list box, and drag the center
bottom handle up just a little bit—enough to fit
an entry box.

Hub
Editing the Window -3-
Here’s how you place a variable (or database field) in
a window:
❏ Select the Dictionary Field tool from the tool

box palette .
❏ Select Local Data.
❏ Select OrderTotal.
❏ Press Select.
❏ Click below the list box, in line with the left side

of the Change (middle) button.

Hub
Editing the Window -4-
The Select dialog reappears, ready to place another
field or variable.

❏ Press Cancel; you only need to place the one field.

Hub
The Template Interface -1-
Access the template interface for the browse list
box control. It contains options which allow you to
sum, count, or average any column in the listbox, and
place the result in an edit box outside the list box.

❏ Right click the listbox.

Hub
The Template Interface -2-
The Actions menu item displays the design-time
user interface controls that the template writer
included in the template to allow you to set the
properties that direct the Application Generator to
generate code to support the functionality you
request. These controls appear on a property sheet
which appears when you choose the menu item.

You can write your own templates. The Template
Language Reference describes the various control
structures, dictionary, and application symbols that
you can access to intelligently generate code. It also
describes the controls you can include in your own
templates so that you or other members of your
development team can choose exactly what code to
generate.

Hub
The Template Interface -3-
❏ Choose Actions.

Hub
The Template Interface -4-
To add a browse total, you need to access the
controls on the Totaling sheet.

❏ Click the Totaling tab.

Hub
The Template Interface -5-
You can optionally total more than one column; to do
so, you choose one at a time. For this exercise, you’ll
only choose one column to total:

❏ Press Insert to open the Browse Totaling dialog.
This dialog is part of the browse list box control
template.

Hub
The Template Interface -6-
First you indicate the entry box to hold the total. You
do this by selecting the variable that the entry box
references, in this case, the Order Total field:

❏ Press the Ellipsis button next to Total Target field.
❏ Select Local Data from the Files list.
❏ Select OrderTotal from the Fields list.
❏ Press Select.

Hub
The Template Interface -7-
Next you indicate the type of totaling:

❏ Select Sum from the Total Type drop down.

Hub
The Template Interface -8-
Next, you indicate which column to total, referencing
the variable the column contains, in this case, the
Line Total:

❏ Press the ellipsis button (...) next to Field To Total.
❏ Select Local Data.
❏ Select LineTotal.
❏ Press Select.

Hub
That’s All Folks... -1-
That’s it. You’re done. You’re now an expert. You just have
to close the dialogs and formatter windows, then
recompile:

❏ Press OK to close the Browse Totaling dialog (this
is a template dialog).

Hub
That’s All Folks... -2-
❏ Press OK to close the List Properties dialog.

Hub
That’s All Folks... -3-
❏ Choose Exit to close the Window Formatter:

Hub
That’s All Folks... -4-
❏ Press Yes to save your changes to the Window

structure:

Hub
That’s All Folks... -5-
Save your file, then recompile and run the app!

❏ Choose File ➤ Save to save your work so far.

❏ Press the Make & Run button. This is an
incremental compile, so only one module (the one
containing the window) will be recompiled.

Hub
That’s All Folks... -6-
Check your work. With the application running,

❏ Choose Browse ➤ Browse Customer Information
File .

❏ Double-click on the first record in the list to
display the Changing a Customer Record dialog.

❏ Click on the Orders tab to see the related Orders.

❏ Double-click on the first record in the list to
display the Changing an Orders Record dialog.

Hub
That’s All Folks... -7-
❏ Click on the Items tab to see the related Items.

You’ll find the Line Total and Order Total on this
sheet.

Hub
Where to Go From Here -1-
Would you like to take a shot at creating an
application from your own data files, now? Be sure to
work with a copy of your database first, until you’re
more familiar with Clarion.

Do you have dBase or Clipper files? You can use the
direct drivers. For Microsoft Access files, you can use
an ODBC driver (note: you cannot use the Microsoft
Office 4.x Access driver—it’s designed only for use
by Microsoft Office! Be sure your Access ODBC
driver—ODBCJT16.DLL or ODBCJT32.DLL—is
version 2.00.23.17 or higher. Select the driver in File
Manager or Explorer and choose File/Properties).

Hub
Where to Go From Here -2-
If you’d like to continue doing exercises, we suggest
reading the document containing the Getting
Started manual. This is a 200 page book with a
more comprehensive tutorial than the exercises
you’ve followed here. You actually create the database,
and build the application step by step.

There’s no limit to the functionality you can include
in a Clarion application. Be sure to look in your
\CWEVAL\EXAMPLES subdirectories for several
example apps. We included an icon in your Clarion
program group for the Tree application, as a
representative sample app.

Thank you for following the exercises.

Tutorial

Reviews

Introduction

Manuals

HyperText Node -3-
Here's several suggested topics you can jump to
from here. Just click on the text description below:

❏ Next in Sequence
❏ A Brief Preface
❏ What is Clarion for Windows?
❏ Code Reusability and Productivity
❏ Development Environment Features
❏ How Should You Evaluate?
❏ Development Flowchart
❏ Pre-Planning Your App With the Data Dictionary
❏ A Typical Clarion Application
❏ The Browse-Form-Browse Paradigm
❏ The ACCEPT Structure
❏ The Clarion Language
❏ Competitive Analysis
❏ Hypertext Hub

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Architecture
This section describes the parts of the development
environment and how they work together. The
development flowchart on the next “page” visualizes
it all.

After you view the flowchart, we’ll explain how the
Clarion for Windows architecture benefits you and
your development projects.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Development Flowchart

Source Generation

(REGISTRY.TRF)

Data Definitions

Data Dictionary

(*.DCT)

Application Generator

(*.APP)

Window Structures

Window Formatter

Report Structures

Report Formatter

Generated Source Code

(*.CLW)

Embedded Source

Text Editor

Compile & Link

Executable

(.EXE File)
Debugger

Compile & Link Options

Project System

Template Definitions

Template Registry

(REGISTRY.TRF)

Formulas

Formula Editor

User’s Guide:
Development Flow

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

High Performance Engine
With over ten years of evolution and experience both
as a 4GL language, and as a developer of highly
regarded compilers, the Clarion language and backend
TopSpeed compiler provide the foundation for the
Clarion for Windows development environment. Most
of the interface is written in Clarion. The compiler,
debugger and other basic components are written in
TopSpeed languages (C, C++ and Modula-2).

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Vision
The vision behind the TopSpeed compiler line is a
generic back-end compiler. Each language exists as a
front-end or “surface.” The project system processes
the source code modules for each “surface”
language, then generates intermediate symbols and
tokens, and forwards them to a common backend
compiler. The .OBJ files are the same, no matter
which language provided the “surface.” This provides
a seamless integration for multi-language projects.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

InfoWorld 8/14/95:
Clarion Best for Business Apps

4GL With 3GL Performance
More importantly, it enables a developer working in a
fourth generation language to create applications
which run as fast as those written in a third
generation language such as C. The advantage, of
course, is in the fact that 4GL development is more
suited to business applications which typically
require shortened development schedules and
“canned” support for special needs such as binary
coded (fixed point) decimal math (typically required
for accurate multiplication and division of currency
values).

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Software Manufacturing

Code Reuse Made Easy -1-
Over the last few years, objects have been
increasingly portrayed as the modern road to code
reusability. Yet every object oriented language is also
admitted to have a steep learning curve, without
exception. Programmers and businesses have had to
decide whether the investment of a year’s time per
programmer to learn an OOP language (this is the
time period commonly allotted by C programmers to
learn C++) is worth the return in “reusability.”

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Reviews:
PC Week

Code Reuse Made Easy -2-
But there are discrepancies between theory and
execution. PC Week (12/26/94), in an article entitled
“The picks and pans of 1994,” listed “the C++
Programming Language” as number one in the
“Biggest Letdowns of the Year:”

“With syntax so chaotic that even compilers have to
guess at it, C++ code had better be reusable,
because no one will ever want to reverse-engineer it.
The programming language’s “feature”—being a
superset of C—is a fundamental bug. With
numerous large projects being written in already
obsolete dialects, C++ is arguably an “instant
legacy” language.”

Bottom line: what good is code re-use if you can’t
figure out what the code is doing in the first place?

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Code Reuse Made Easy -3-
If the new class created by one programmer needs to
be debugged or adapted, how does one programmer
pick up another programmer’s work when it takes an
inordinate amount of time to read the first
programmer’s work? Even the original programmer
may have difficulty picking up a project he or she put
down six months ago. Additionally, when an OOP
programmer creates a new object based upon a
previously created class, the object includes all the
functions and other baggage from that previous
class. This is compiled into a “code-bloated”
executable that is then liable to be called “fatware.”

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Code Reuse Made Easy -4-
This is where Clarion, its Application Generator, and
Clarion templates shine. Anyone can use your code
again and again when you create a template—
because your template has its own user interface.
You specify the data or options necessary to make
the code work. The template collects them for you,
and the application generator writes source code
specific to the options chosen. The compiler creates
an executable which supports only the functionality
the developer wishes, no more.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Clarion Code Reusability -1-
Clarion’s approach to code reusability is built on the
Clarion language, and the Clarion template language.
The statements in a template include template
symbols which link to the dictionary and resolve at
code generation time, for example, to a database
field name. Template statements declare the
controls in the template design-time interface.
These then capture developer input and store it in
template symbols which are variables maintained by
the application generator. Template control
statements determine what code to generate based
on the value of the symbols. The template language
itself, being a meta-set of the Clarion language, is
only slightly less expressive than Clarion, and quite
readable. You’ll find more on the Clarion template
language in the language section.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Clarion Code Reusability -2-
Therefore, Clarion’s overall approach to code
reusability is this: an intelligent, flexible set of
instructions that gathers input from the developer,
reads the database dictionary, then writes Clarion
language source code to implement the tasks that
the developer wants the application to do. We
compile only what the developer wants to do; there
are no extraneous functions in the executable, as is
typical with OOP compilers.

❏ Which development environment supports
greater code reusability?

✔ Clarion. Clarion templates are intelligent and
flexible.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Database Dictionary: Pre-Planning
It’s become popular for RAD tools to offer database
wizards instead of full-fledged dictionaries. Yet wizards
are typically one-way tools which don’t evolve with
your application: wizards generally set up a collection
of object properties which you then have to
maintain. The Clarion Database Dictionary allows you
to add or edit files, fields, relationships, Referential
Integrity constraints, and many other properties as
you go.

With a well-planned dictionary, an application
practically writes itself. Clarion templates make full
use of the Application Generator hooks to the
dictionary. Your RI constraints, field validity rules, and
pre-formatting for controls—all the way down to
what color, font size and style a prompt for an entry
field should be—can be set in the dictionary.

Migrating to Windows the Easy Way: Let Your Data Do the Programming:

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Dictionary Pre-Formatting -1-
Clarion for Windows goes far beyond the “standard”
support for validation rules, such as requiring a value
entered by the end user fall within a numeric range.
Developers, for example, can specify a value must
exist in a related file, or be an item in a list. When
reading the database dictionary, the Application
Generator even knows to create a list box control to
display the choices if the developer checks a box.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Dictionary Pre-Formatting -2-
Dictionary options can be used in multiple
procedures, or multiple applications. Because the
same database dictionary can be used for multiple
applications, the developer gets “more bang for the
buck,” formatting the controls for many applications
in a single step. And, the formatting options are
“live;” if you change an option in the dictionary, it
updates the control in your application.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Dictionary Pre-Formatting -3-
All the fields you define in the database dictionary
are accessible to the window and report formatter. You
can simply place an entry control (edit box) in a
window, and select a data file and field from the file
schemata window. The template generates the code
to access the value from the current record, or write
a change to it. Similarly, using the report formatter,
you can select a field whose contents will fill the
string control you place, cycling through the data
file and printing the value in the current record for as
many records that meet the criteria you set using
the template interface.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

International Custom Sorts
Clarion for Windows also supports user defined sort
sequences. This provides extremely strong support
for shared international applications utilizing
different alphabets or accented letters. Clarion may
be the only Windows development environment in the
world with which you can support two users, working
side by side accessing the same database, the
same tables and keys, in different languages, with
each seeing alpha sorting in the precise order
expected in each language.

❏ Which development environment has the
strongest database dictionary?

✔ Clarion. The active link between the
database dictionary and application
generator provides strength, flexibility and
connectivity.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Visual Design Tools: Fast Development
Window and Report Formatters cut the time required
for building your user interface and reports by
generating the data structures necessary for the
compiler to create them. As you edit the controls
graphically, re-sizing or otherwise changing their
appearance, the attributes of the data structures
change accordingly. You can also edit them at the
source code level, and when you next open the Window
Formatter, it reflects the changes.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Placing Database Fields
The visual design tools are tightly integrated into
the Application Generator. When you place a control,
you can reference a database field or memory
variable. The reference is stored in the control’s data
structure, with an attribute called its USE variable.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Visual Design Tools -2-
The control loads the correct value into itself, when
the window opens, or whenever the DISPLAY
statement is encountered. If the end user changes
the value in the control, another statement updates
the database field or memory variable.

Additionally, Clarion supports PICTURE strings to
format the values in the controls, so that they
appear in the way the end user expects them. If, for
example, a database field called ExtendedPrice
contains a value of 10736.77, the picture can
automatically format its appearance in an edit box
as $10,736.77. You can specify a date or currency
picture to automatically take the same format as
the default specified in the end user’s WIN.INI file.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Visual Design Tools -3-
Additional control attributes can specify read-only,
password (typing appears like ****), upper case, and
others. These can all be stored for you in the
database dictionary, by field, or custom placed from
within the Window Formatter.

User’s Guide:
Setting Control Properties

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

How They All Work Together -1-
The template symbols, which you never see unless
you want to, provide the glue that holds it all
together. They not only provide the field names from
your database, but additionally provide the “extras”
the database dictionary can set for you, like default
column headings for a report.

The Application Generator is the linchpin. It reads
the template registry, presents the template
interface to you, opens the door to the Window and
Report Formatters and the Formula Editor, maintains
the Application Tree, presents database and pre-
formatted options you’ve set in the dictionary, and
finally, gathers all your work together and generates
the Clarion language source code modules, inserting
any custom code you’ve written into the appropriate
places.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

How They All Work Together -2-
The Application Generator then forwards these
neatly wrapped bundles to the project system, which
calls the compiler and linker. From there, you debug it
or just run it. When you’re ready to send it off to
your end user, the application generator, via the
default templates, has even left you a text file
(appname.SHP) which provides a list of files you
need to include—the .EXE file and any required .DLL’s.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Clarion vs. Delphi

How They All Work Together -3-
It’s organized—not hidden behind “a thousand doors.”
It’s logical—your project is organized according to
the procedures you define—not a gordian knot of
user interface objects. It’s compact—why do you
need a 2.5MB database engine when a 100K driver
.DLL will do? It’s tight—by all means, please examine
a Clarion for Windows compiled application with
Bounds Checker or a similar tool—your Clarion
applications deliver absolute reliability, without the
GP faults often found in script apps created by
competitive RAD tools.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

How They All Work Together -4-
Clarion for Windows is a business tool.
Unfortunately, over the years developers have come
to expect slow, lackluster performance from 4GL’s
and business-oriented development tools. Clarion for
Windows presents a RADical departure from your
previous expectations.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

How You Make It Work
This section presents a simplified overview of the
steps for creating a typical Clarion for Windows
Application. The Development environment contains
seven main functional parts, all of which are
accessible from the others. This section provides a
description of each, in the order that a typical
programmer might encounter them.

Each part contains dialog boxes which the
programmer fills out to “describe” the Application’s
functionality to the Application Generator.
Programming Clarion for Windows is in many ways a
“walk through” a series of dialog boxes. There’s no
mandatory sequence in which you must “fill in” the
dialogs, though you do need to create some files
before others. If you know which dialogs do what, it
makes building your application that much quicker.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Dictionary Editor -1-
The Data Dictionary (a .DCT file), maintained by the
Dictionary Editor, holds a description of the
database, including its files, driver(s), fields,
relations, field validation rules, and referential
integrity constraints. It’s the first file you create
when you design your application. You can create the
file definitions “from scratch” (using Quick Load or
not), or import definitions from existing data files.
The other parts of the IDE look up the options you
set in the dictionary to let you, for example, easily
place data fields in a dialog box you design for the
end user. The Application Generator creates code for
all the statements that access the data files
based on how you construct the Data Dictionary.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Dictionary Editor -2-
Start a new dictionary with the File ä New
command, then select Dictionary. This leads you to
the Dictionary dialog. Define your application’s data
files, aliases, and views in this dialog. It also shows
the relationships between files.

Buttons lead to the New File Properties, the New File
Alias, the New File View, and the New Relationship
dialogs. Specify the name and file driver for each
data file, one by one, in the New File Properties dialog.
It also allows you to set options such as Threaded,
which specifies that each execution thread
accessing the file gets its own record buffer. This is
useful for MDI applications.

User’s Guide:
Using the Dictionary Editor

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Dictionary Editor -3-
From the Field/Keys Definition dialog, press the
Insert button to specify fields, keys, and index files.
All the information is arranged hierarchically.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Dictionary Editor -4-
Define fields, their data type and size in the New
Field Properties dialog. You can pre-define control
properties, such as text justification. Two buttons
provide shortcuts to all the properties dialogs in
the Window and Report Formatters. You can also “back
up” to the previous dialog to define keys and
relationships.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Dictionary Editor -5-
Specify the key components in the Key Components
dialog. Clarion for Windows automatically builds the
key correctly even if you specify mixed field types,
such as a string and a decimal. From here, you can
“back up” to the Dictionary dialog to define
relationships.

Define relationships in the New Relationship
Properties dialog. You can also specify Referential
Integrity constraints from controls in this dialog.

With the major parts of the dictionary defined, you
save the dictionary and move on to the .APP file.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Application Generator -1-
The Application Generator generates your
application’s code, based on the predefined
templates you pick from the template registry. It
allows you to add global and local memory variables,
and customize the procedures with embedded source
code.

The Application Generator also provides access to
other parts of the IDE to customize the look and
functionality of the windows, menus, reports and
other user interface elements.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Application Generator -2-
Start a new application with the File ➤ New
command, then select Application. You set the
basics—application name, data dictionary name,
help file and the application template—in the
Application Properties dialog. This creates the .APP
file and displays the Application Tree.

View and maintain the parts of your application in
the Application Tree dialog. It hierarchically displays
your application’s procedures, and marks the ones
still to be defined as “ToDo.” A button press accesses
the Select Procedure Type dialog.

Select functionality for a “ToDo” procedure in the
Select Procedure Type dialog. Procedure templates
such as Browse and Form appear in a list. The Select
button brings up the Procedure Properties dialog.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Application Generator -3-
The Procedure Properties dialog is the hub for all the
other dialogs that let you customize the procedure
so that your application does the job the way you
want. Press the Global button to define global
memory variables, or press the Data button to define
local memory variables.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Application Generator -4-
Define and set the order the program initializes local
memory variables in the Data dialogs. Press the
Insert button to define variable name, type, size etc.,
in a dialog box identical to the New Field Properties
dialog.

Press the Embed button to display the Embedded
Source dialog. This allows you to insert custom
executable code at points before, during, and after
the procedure, or on window and field-specific events.
Select the point and press the Add button.

After you’ve customized the procedure template
using the Window Formatter, Report Formatter and/or
Text Editor, you can return to the Application Tree and
generate the code!

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

User’s Guide:
Using the Window Formatter

The Window Formatter -1-
You visually design your application’s windows and
controls—everything the end user sees—in the
Window Formatter. It automatically generates source
code for the elements you visually design on screen.

When using the Application Generator, you’ll call the
Window Formatter by pressing the Window button in
a Procedure Properties dialog, to customize the
window or dialog box.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Window Formatter -2-
The Window Formatter provides a view of the window
under development. Click in the toolbox, then click in
the window to place a new control. You can then press
the Test button to see exactly how the window
appears to the end user.

Each window and each control in the window has an
associated property dialog that controls its
appearance, and if an entry field, its contents. You
select the window or anything in it, then press the
Properties button. The Window Properties dialog sets
basic elements such as system menus, caption, etc.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Window Formatter -3-
A typical control property dialog sets options such
as a label, its field equate label to reference it in
executable code, or if an entry box, a field or variable
name to reference its contents.

If the window has a menu, choose Menu ➤ New Menu
to call the Menu Editor. Edit the menu text, add new
items with the Add Item button, and specify menu
item functionality by pressing the Actions button.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Window Formatter -4-
Using the Actions sheet for a menu item, you can
associate a procedure call, so that when the user
selects the menu command, it executes the
procedure you name.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Report Formatter
Using the Report Formatter, you place controls in
bands. At run time, the print engine processes the
records you specify, printing the fields you specify in
the Detail, or other bands. The Report template
automatically processes your files, filling the
controls according to the key you specify.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Text Editor
The Text Editor is a full-function programmer’s editor
in which you can write source code. Most likely, when
using the Application Generator, you’ll call the Text
Editor to create embedded executable source code
to further customize the way a procedure operates.

The Editor features color coded syntax highlighting,
making it easier to identify the different parts of
the Clarion language statements for editing
purposes. It also has full text search and replace
capabilities, along with all the standard editing tools.

You can create a window or report structure with
hand code, or press a button to call the window or
report formatter to edit it graphically. You can flip
between graphical and source code editing.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Formula Editor
The Formula Editor helps you to quickly generate a
statement resulting in a value. You can use the
Formula Editor to assign values to computed fields,
conditional fields, and record filters.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Project System
The Application Generator automatically creates
the project file for the application. The project file
contains compiler and link options, such as whether
to include debug code, optimization choices, and so
on. You set whether your project is for 16 or 32-bit
Windows by pressing the Project button, pressing the
Properties button, then choosing the target OS.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Project System
The Project Tree displays the source code files,
libraries and other external files for the project.
Press the Properties button to set specific compiler
and link options.

More likely, when creating an application using the
Application Generator, you’ll just press the Make
button to compile and link the application. The only
Project system dialog you’ll encounter is the Compile
Results dialog, which is one way to access the
Debugger.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Debugger -1-
Debugging a program usually requires running the
program and repeatedly stopping it to examine the
value of different variables. The Debugger consists of
a number of windows which display source code,
variable contents, active procedures and more.

To view a source code window, you’ll tell the project
system to include debug information in the .EXE file
(this is the default setting), then start the
Debugger by pressing the Debug button in the
Compile Results dialog, or by choosing Project ä
Debug.

The simplest way to debug your application is to
identify the part of the program that you think is
producing the bug, and set a breakpoint, using the
Breakpoint dialog, at that part of the code.

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

The Debugger -2-
You can then run the program, and the Debugger will
suspend it at that point so that you can examine
the value of the variables. This will (hopefully!) help
you pinpoint the error so that your application is
perfect!

Hub

Node

Welcome

Tutorial

Prototype

Language

Competitive

Speed and Flexibility
❏ Which development environment gives you

the overall speed and flexibility you need to
create the best solutions to a wide array of
your end users� needs?

✔ Clarion. You write the least amount of code
necessary to do the job, and when you have
to write code, it�s easier and quicker to write,
easier to read when you go back to maintain
it six months later. It compiles to a small,
fast, tight app which you distribute royalty-
free.

Tutorial

Reviews

Introduction

Manuals

HyperText Node -4-
Here's several suggested topics you can jump to
from here. Just click on the text description below:

❏ Next in Sequence
❏ A Brief Preface
❏ What is Clarion for Windows?
❏ Code Reusability and Productivity
❏ Development Environment Features
❏ How Should You Evaluate?
❏ Development Flowchart
❏ Pre-Planning Your App With the Data Dictionary
❏ The Browse-Form-Browse Paradigm
❏ Expressive, Compact Code Means Productivity
❏ Specialized Data Structures
❏ The Clarion Template Language
❏ Competitive Analysis
❏ Hypertext Hub

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

A Typical Clarion Application
This section discusses the default paradigm of a
typical Clarion for Windows application—specifically
the program flow. Clarion for Windows gives you the
power to substitute any scheme you wish, so this
discussion is only a starting point.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Start With the Database
Good database design helps make an application
more coherent. With proper normalization, and well-
chosen keys, your application practically writes itself.
That’s the idea behind the Clarion for Windows
Application Wizard. Lay out a file definition, defining
keys; CW then generates browse windows, update
forms, and reports (one of each), for each of the
keys you define. And it provides visual
representations of the relationships by providing
synchronized list boxes showing child records when
the end user clicks on a tab on an update form for
the parent record.

That’s also the default program flow embodied in the
default templates. When viewing and managing data,
the typical application presents records to the end
user in the following way:

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Program Flow -1-
■ The end user navigates the database—all or

part of it, one data file or multiple related data
files—by scrolling through a listbox, within which
each item represents one record. The window in
which this takes place is called a “browse.”

User’s Guide:
Using the Procedure Templates

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Program Flow -2-
■ The end user selects a specific record in the list

to perform an action, such as editing the data.
This generally occurs in a separate window, in
which the database fields appear in separate
edit boxes. This is called an update “form.” A form
may also accept new data.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Program Flow -3-
■ Optionally, the end user can look up a value from

a related table during form entry. This opens
another browse in a separate window. The end
user can select an item, closing the new window
and placing the value in the edit box on the form,
in one step. This is called a “lookup.”

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Browse-Form-Browse Paradigm -1-
We call this overall program flow the “browse-form-
browse” paradigm. This is the starting point, after
which you can add all the reports, customized
screens, and specialized procedures that make up
your application.

The underlying structure, which we used in the design
for the default template set, can be described as a
Browse-Form-Browse approach.

Migrating to Windows the Easy Way:
Let Your Data Do the Programming

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Browse-Form-Browse Paradigm -2-
■ By Browse, we refer to a simple scrollable list of

records maintained in a data grid or listbox. The
records can reside in a single data file, include
fields from related tables, or even include fields
derived from formulae. As the end user scrolls
through the list box, the underlying code
navigates the database, usually following the
order set by a key.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The Browse Procedure
The Clarion for Windows default browse template
maintains the browse via a page loaded queue. The
code loads as many records into the queue as will fit
into the current dimensions of the listbox. A queue
is a memory structure akin to an intelligent linked-
list, and can be sorted, added to, and otherwise
edited.

The Clarion for Windows default browse template
also contains four buttons, labeled “Insert,” “Change,”
“Delete,” and “Select.” The first three allow the end
user to call an update form to add and edit a new
record, edit the field values for the record currently
selected in the listbox, or delete the record currently
selected in the list box, respectively. The “Select”
button is for use in look-up procedures, which are
discussed below.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The Form Procedure -1-
■ The default Form procedure is a simple update

form. By default, unless you’ve preformatted
fields in the dictionary, the fields appear as edit
boxes (ENTRY controls in Clarion syntax). When
creating a form with the Window Formatter, you
select a field previously defined in the data
dictionary, then click to place both the edit box
and a prompt control into the window under
construction.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The Form Procedure -2-
The “Insert,” “Change,” and “Delete” buttons all lead
to the same form procedure. An action message, in
the form of a string control appearing inside the
window, advises the end user whether the data
entered into the update form will update an existing
record, provide the data for a new record, or ask the
end user to confirm that the record containing the
data in the current form should be deleted.

In the first two cases, the end user can type in the
data for the fields referenced by the edit boxes, then
press OK. The code then writes the changes to the
database.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The Record Buffers -1-
In a typical MDI application, the template code
automatically creates a new record buffer each time
a browse is opened by the end user (even if it’s two
child window copies of the same browse), so that if
two separate forms display data from the same
data file, any record updates will be safer and more
quickly implemented.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The Record Buffers -2-
Additionally, the template code automatically
handles concurrency checking to guard against
deadlock in cases where multiple users may edit the
same record. It uses an optimistic concurrency
algorithm which provides good protection no matter
what file driver is in use. The code reads the data
from a record, loads the data into memory variables,
and accepts editing by the end user of the variables.
After the end user presses the OK button to close
the form, the code checks the record to verify no
other station has changed it since last read. Only
then does it write data to the file, updating the field
values from the memory variables.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The Lookup Browse -1-
■ The Lookup is a generalized term for the process

of opening a browse onto a related file, from
inside a form, then selecting a record, returning
the data from a field in the selected record to an
edit box within the form. When the second
browse (the lookup; the first browse was the one
the form was called from) is opened, the
“Select” button is enabled, which allows the end
user to choose the currently highlighted item in
the list box. The code then fills the edit box from
the form that called the lookup with the item.

A browse lookup, therefore, serves the purpose of
reducing the typing required by an end user, by
presenting choices from a related file. Additionally, it
can optionally limit end user choices to those in the
related file.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The Lookup Browse -2-
The general convention for calling a lookup from a
form has been to place an ellipsis button to the
immediate right of the edit box which should accept
the lookup value. In various GUI environments, the
ellipsis (...) is often used to signify more choices will
be presented to the end user in a separate window
or dialog, upon the selection of a menu item or press
of a button.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Threads and Global Action Variables
Clarion MDI applications automatically support
threading. The default templates start a new thread
each time the end user opens a browse window.
Subsequent forms or lookups called from the browse
are included in the same thread started by the
browse. A second call to the same browse (i.e.,
choosing for a second time the menu procedure that
calls a browse) opens a second thread.

Under 16-bit Windows 3.x, thread management is
cooperative. A Clarion for Windows application
automatically splits its application thread between
the child MDI window threads. Under 32-bit Windows,
Clarion apps automatically start a separate
preemptively tasked thread for each browse opened,
when creating a 32-bit application for Win 95 or
Windows NT.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Request and Response
Global variables are made available to each thread. In
this way, a Clarion for Windows application can
signal across threads. The template system
incorporates such a system; we refer to it as a
Request and Response system. The actual variable
names for the “signals” are GlobalRequest and
GlobalResponse. Typical standard “values,” which the
templates act upon when the “request” is made, are
“InsertRecord,” “ChangeRecord,” and so forth.

Within this system, each thread gets its own copy
of the global variables, which can safely be changed
within the thread without interrupting a process
occurring in another thread. To learn more about the
system, please read the topic entitled “Request and
Response,” in the main Clarion for Windows on-line
help file.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The ACCEPT Structure -1-
Once the browses and forms are in place, and the
threads started, what actually manages the
process of end user interaction with your
application? The ACCEPT loop processes all system
messages and “accepts” end user input for a given
window. There are two general types of messages the
ACCEPT loop handles:

Language Reference:
ACCEPT

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The ACCEPT Structure -2-
■ When Windows sends a message to the window:

for example, if the end user initiates a close-
down from the app’s system menu, it’s processed
via the EVENT() function. You can optionally
control your app’s response, or you can let it be
handled automatically.

■ If the end user selects a control by clicking in it,
or if the end user types a value in a control,
that’s processed by the FIELD() function; and
again, you have total control.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The ACCEPT Structure -3-
You have no need to worry about the Windows
messaging flow, or the handles and pointers that
manage its dynamic memory management of your
application. The templates automatically generate
the ACCEPT structure, plus all the code that
implements updating the database with any new
data entered by the end user.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

How It Works
So how does it all work? OPEN(MyWindowLabel)
creates and displays the window. The ACCEPT loop
enables mouse and keyboard processing by the end
user. If the end user tabs or selects a control with
the mouse, types characters then tabs to the next
control, or presses a hot key, the ACCEPT gives the
program control. It’s a simple yet thoroughly effective
approach in an event-driven system such as Windows.
The end user can interact with the program however
he or she likes, yet the programmer, who after all is
trying to run a business, maintains control to verify
that all the information required to take an order, for
example, is entered. Finally, CLOSE(MyWindowLabel)
restores the state of the application prior to
opening the window.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

The ACCEPT Structure -3-
OPEN(MyWindowLabel)
ACCEPT

CASE EVENT()
OF EVENT:CloseWindow

!(user closed window - call routine or procedure to do something)
END
OF EVENT:CloseDown

!(user exiting Windows - call routine or procedure to do something)
END
CASE FIELD()
OF ?MyButton

!(user pressed my button - call routine or procedure to do something)
END
OF ?OK

!(user pressed OK button - call routine or procedure to do something)
END
OF ?Cancel

!(user pressed Cancel button - call routine or procedure to do something)
END

END

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Embed Points -1-
You can optionally embed your own Clarion language
code to execute upon any specific event, in response
to the end user selecting a control, or when the end
user types data in an edit box and tabs to the next
control.

Access to these “embed points” is via the Embedded
Source dialog. Each control in a window appears in a
tree list. Controls generally have two nodes: selected,
to execute as soon as the control obtains focus;
accepted, to execute immediately after the end user
provides input and moves to the next control.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Embed Points -2-
To write your own custom code to execute at one of
these embed points, you select the node for control
you want, press the Add button, and type your
custom code into the text editor. Your custom code is
inserted into the ACCEPT loop, in-between source
code lines generated by the template, and from there
it’s compiled into the application. This provides for
seamless integration between your code and the
template code.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Development Methodology -1-
In the previous section, we listed a “walk through”
the dialogs you encounter as you create a Clarion
for Windows application. Here’s a more “conceptual”
view:

■ Create a new database dictionary. This includes
importing file structures from existing data files
or tables, or defining them from scratch. You can
optionally pre-format window and report controls
by field. You then optionally set the relationships
and Referential Integrity constraints.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Development Methodology -2-
■ Create a new application file. You specify the name

of the database dictionary, and set project
options, such as whether you wish to create an
executable (.EXE) or dynamic link library (.DLL).

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Development Methodology -3-
At this point, you can either run the Application
Wizard, or define one procedure at a time. In this
section, we’ll describe the latter method.

■ Fill in the first procedure. For most database
applications, we find an MDI application frame is
the template of choice. Generally, the “starting
point” is customizing the menu and toolbar, filling
in the menu commands your application requires.
For each menu command, you set an action,
which in turn provides template code to support
a new thread for each child window you expect to
open from the app frame.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Development Methodology -4-
■ Define global variables. You define variables, and

optionally, their initial contents, in a dialog
similar to the one with which you define
database fields in the database dictionary.

■ Customize the appearance and contents of
subsequent windows and reports. You can choose
procedure templates such as the browse
template, with its predefined controls, then use
the listbox formatter to specify and format the
database fields or variables that appear in the
listbox. You can also use a generic window
template, then populate it with control
templates. This step also includes placing edit
boxes or other user entry controls to edit
database fields, or implementing other
functionality, such as placing a .VBX control .

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Development Methodology -5-
■ Optionally add handwritten source code to

embed points. Generally, the templates provide all
the code necessary for maintaining the
database. You might add code to manage other
aspects of the program. For example, you may
wish to store end user preferences in an
application’s .INI file. In this case, the templates
can create the .INI file, even automatically
storing window positions. To store additional
options, you might add code to write to the .INI
file at an embed point such as “before closing
the window,” for the application frame, and use
the Clarion PUTINI function to do the actual
writing.

Hub

Node

Welcome

Tutorial

Architecture

Language

Competitive

Development Methodology -6-
■ Compile, Run and Debug. You can still go back to

either the application or database dictionary to
change application and procedure options. The
Application Generator maintains your flexibility
to change template options, unlike one-way-
wizards found in other RAD tools.

Tutorial

Reviews

Introduction

Manuals

HyperText Node -5-
Here's several suggested topics you can jump to
from here. Just click on the text description below:

❏ Next in Sequence
❏ A Brief Preface
❏ What is Clarion for Windows?
❏ Code Reusability and Productivity
❏ Development Environment Features
❏ How Should You Evaluate?
❏ Development Flowchart
❏ Pre-Planning Your App With the Data Dictionary
❏ The Browse-Form-Browse Paradigm
❏ Expressive, Compact Code Means Productivity
❏ Specialized Data Structures
❏ The Clarion Template Language
❏ Competitive Analysis
❏ Hypertext Hub

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

The Clarion Language
The Clarion language is an elegant, practical
language especially designed for business
applications. It’s compact, so you can write less to
do more. It’s expressive, so you can read your code,
and others can read yours more easily. It contains
unique data structures especially designed for
Windows programming. It has a straightforward
database grammar. It’s flexible, extensible, and
whether you use it a little, just to supplement the
functionality of the templates, or a lot (many Clarion
developers like to code from scratch, using only the
text editor and the visual design tools), after a
short time we think you’ll agree it’s a perfect
language for business oriented programmers.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Expressive, Compact Code
Back at the very beginning, in 1985, the introduction
to the language reference manual for version 1.0 of
Clarion (for DOS) included these statements:

“Clarion has been on my mind since a FORTRAN
compiler kicked me off for missing an “H” count in a
FORMAT statement. The author of the compiler
must have thought I could count better than the
computer.”
“A programming language ought to help a
programmer, requiring the fewest statements
necessary to clearly define a process. Sequences
that are always required should never be required.
Why treat a memory-mapped display like a teletype?
Why don’t compilers generate data type
conversions? Why so much punctuation? And why are
compilers so fussy?

Origins of the Clarion Language

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Expressive, Readable Code
In other words, why don’t the language and the
compiler work together to make the programmer’s
job easier, leveraging the strengths of the computer
to handle all the repetitive aspects of the job, freeing
the programmer to concentrate on the solution to
the business problem at hand?

The more expressive a programming language is, the
easier it is to read code that someone may have
written, or that you yourself wrote, say, six months
ago. The more readable a programming language, the
easier it is to learn the language, and improve your
own skill at it by reading example code written by
someone else.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Compact Code = Productivity
A compact language requires less time to complete
a task. One of the more common traits of fourth
generation languages is that they compress the
grammar for processing databases. The many steps
required to open a file, read it, and place the field
contents into record structures, typically requiring
dozens of lines in third generation languages, merely
require a few statements in Clarion. As a 4GL,
Clarion leverages your current programming skills; it’s
a smooth learning curve. Hand coding is extremely
efficient, and probably faster than any compiled
language we know of.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

“Hello World”
Consider that typical example program—Hello
World—as illustrated in example code for Clarion
and C++ (Microsoft Visual C++).

The Clarion for Windows “Hello World” is precisely
eleven lines—no include files. In Clarion, the Window
itself is a data structure—and the compiler knows
exactly what to do with it. User interface objects—
buttons and strings—reside inside the window
structure, making the code very readable.
PROGRAM
Window WINDOW(‘Clarion for Windows’), AT(,,160,60), SYSTEM

STRING(‘Hello World’), AT(30,15,90,12), CENTER
BUTTON(‘OK’), AT(60,35,,), USE(?OK), DEFAULT

END
CODE

OPEN(Window)
ACCEPT

IF ACCEPTED() = ?OK THEN BREAK.
END
RETURN

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Freeing You From Grunt Work
The Clarion ACCEPT loop, described in the previous
chapter, elegantly supports the Windows messaging
model. It also makes the programmer’s task easier
by freeing the Clarion developer from the “grunt” work
normally associated with Windows programming,
such as manually specifying that the window should
repaint if it’s temporarily covered, then uncovered by
another application’s window.

To the Clarion developer, specialized Windows data
structures are just common sense. If the compiler
understands the operating system, why shouldn’t it
do the work for you?

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

C++ “Hello World” -1-
Now consider a “bare bones” Microsoft Visual C++
“Hello World:”
//Contents of HELLO.H
#ifndef _——HELLO—H——__
#define _——HELLO—H——_
class CMainWindow : public CDialog
{
public:
 CMainWindow();
 afx_msg void OnOkButton();
 DECLARE_MESSAGE_MAP()
};
class CTheApp : public CWinApp
{
public:
 BOOL InitInstance();
};
#endif _

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

C++ “Hello World” -2-
//Contents of HELLO.CPP
#include “stdafx.h”
#include “resource.h”
#include “hello.h”
CMainWindow::CMainWindow()
{
Create(“HelloBox”, NULL);
}
void CMainWindow::OnOkButton()
{
CloseWindow();
}
BEGIN_MESSAGE_MAP(CMainWindow, CDialog)

ON_COMMAND(IDM_OKBUTTON, OnOkButton)
END_MESSAGE_MAP()
BOOL CTheApp::InitInstance()
{
TRACE(“HELLO WORLD\n”);
SetDialogBkColor();
m_pMainWnd = new CMainWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;
}
//Contents of RESOURCE.H
#define IDM_OKBUTTON 100
//Contents of HELLO.RC
#include “resource.h”
#include “afxres.h”
HELLOBOX DIALOG DISCARDABLE 34,22,144,75
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION “Visual C++”
FONT 8, “Helv”
BEGIN

CTEXT “Hello World”,IDC_STATIC,0,23,144,8
DEFPUSHBUTTON “OK”,IDM_OKBUTTON, 56,53,32,14,WS_GROUP

END

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Teaching Windows to the Compiler
Because C++ doesn’t innately understand the
Windows operating system, the programmer has to
“teach” it to the compiler—by including a header file,
which in turn includes yet more files with the defines
and class definitions necessary for the Microsoft
Foundation Classes. In all, it takes about two
megabytes of header files before the compiler can
even address your code! And then your code isn’t
nearly as readable as Clarion. To look at the actual
code, you have to examine a constructor function,
message maps and resource files to understand
what the application does. No wonder C++
programmers can’t read each others’ code!

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Code Reusability -1-
In practical usage, OOP code reusability exists on
only two levels. The first is the base object
framework, which usually handles only creation and
simple maintenance functions, such as opening a
window and checking the message queues.
Frameworks rarely provide more than an app
skeleton, for which your hand coding provides the
“flesh.” The second level is when a single programmer
creates an object class, and it’s reused in another
program by the same programmer. If another
programmer in the same shop needs the same
functionality, more often than not, that second
programmer codes from scratch rather than
deciphering the first programmer’s work—as a direct
result of the difficulty of reading OOP code.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Code Reusability -2-
We don’t contend that Clarion is superior to OOP
languages—but we do think Clarion is an alternative
that often delivers higher productivity. By combining
the structured design of a traditional programming
language, with the maximum code reusability often
associated with OOP, Clarion gives the developer the
best of both worlds.

Clarion for Windows
4-Color Brochure

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Windows Data Structures
Another Rapid Application Development tool’s ads
endlessly proclaim its compiler can compile 350,000
lines of code per minute. Who cares? If it requires
that much code to teach your compiler what a
window is, it had better compile fast!

Frankly, these days, when every professional strength
tool (including Clarion, of course) can easily do an
incremental compile, it’s how many lines of code you
have to write that matters. And Clarion’s
compactness, its specialized data structures, and
even its expressiveness (shorter comments to
write!) mean you write less.

Clarion vs. Delphi

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Windows Data Structures
Because Clarion supports special data structures
such as a WINDOW, we like to say it’s the only
Windows-aware compiler in the world. In fact, you
could say that Clarion condenses the grammar for
processing graphical user interfaces in the same way
that Fourth Generation Languages compress the
grammar for processing databases.

There are other important structures to make your
job easier:

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Other Specialized Structures
■ FILE/RECORD

Like COBOL, Clarion provides support for the
database file structures at the language level.
Frankly, we don’t see how any compiler product can
claim to be a business-oriented language without
this degree of support.

Moreover, Clarion implements a driver-neutral
database grammar. You can access your data with
the same compact file access statement, no matter
what the database or file format is. The OPEN
statement opens a data file referenced by a FILE
structure. The SET statement positions the record
pointer to match a key value. The GET and PUT
statements read a record into the record buffer, or
write an updated record, respectively.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

File/Record -1-
Whether ISAM, SQL, or other DBMS, the driver
creates an optimized instruction specific to its
target, implementing your intention. The Clarion
database grammar assumes every database
possesses features that include relational join, filter
and project operations, as well as scrollable cursors.
The Clarion database drivers exploit the
functionality available from the DBMS, where
available, and automatically fill in whatever is
missing. Consequently, Clarion applications are
automatically optimized for any chosen database.

Language Reference:
FILE

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

File/Record -2-
The following is an example of a file structure for a
Clipper database file. Notice that the data
structure is flexible enough to support options for
defining expressions for the index files, as well as
support for converting the strings with which the
Xbase file stores numeric fields into real numeric
values. This definition was created from an existing
file using the Import command, so no coding was
required; the only steps necessary were to allocate
the length of the record buffer for the memo field (in
this case, 2048), and to name the pointer to it
(ptrMEMO) which is actually stored in the .DBF file.

User’s Guide:
Database Drivers

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

File/Record -3-
NAMEFILE FILE,DRIVER('Clipper'),NAME('NAMEFILE.DBF'),PRE(NAM),BINDABLE,CREATE,THREAD
LastName INDEX(NAM:LNAME),NAME('lname.ntx'),OPT
Persons
INDEX(NAM:P_ID,NAM:DOB),NAME('persons.ntx=C[str(P_ID)+dtos(ctod(DOB))]'),NOCASE,OPT
Spouses
INDEX(NAM:S_ID,NAM:DOB),NAME('spouses.ntx=C[str(S_ID)+dtos(ctod(DOB))]'),NOCASE,OPT
Fathers
INDEX(NAM:F_ID,NAM:DOB),NAME('fathers.ntx=C[str(F_ID)+dtos(ctod(DOB))]'),NOCASE,OPT
Mothers
INDEX(NAM:M_ID,NAM:DOB),NAME('mothers.ntx=C[str(M_ID)+dtos(ctod(DOB))]'),NOCASE,OPT
Memo MEMO(2048),NAME('memo')
Record RECORD
LNAME STRING(30)
FNAME STRING(30)
STREET STRING(30)
CITY STRING(30)
STATE STRING(4)
ZIP STRING(10)
COUNTRY STRING(30)
NOTES STRING(30)
DOB STRING(10)
DOM STRING(10)
DOD STRING(10)
POB STRING(30)
POM STRING(30)
POD STRING(30)
F_ID REAL,NAME('F_ID=N(6,0)')
M_ID REAL,NAME('M_ID=N(6,0)')
S_ID REAL,NAME('S_ID=N(6,0)')
P_ID REAL,NAME('P_ID=N(6,0)')
ptrMEMO LONG,NAME('MEMO')
SEX STRING(1)

END
END

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Report Structure
■ REPORT

Unlike other tools which require separate, runtime
reporting tools, Clarion for Windows includes a
programmer’s report writer, to create Clarion
REPORT structures which are compiled into your
executable. Some stand-alone report writers require
you to learn another query language entirely to
customize your reports, and the reporting tools can
require as much as five megabytes for the runtime
version alone. Just the difference in the time it takes
to load the report into memory may provide a
performance advantage for Clarion.

Language Reference:
REPORT

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

General Ledger -1-
The following is a complete program, illustrating a
REPORT structure and the statements necessary
to print a complete General Ledger. Note also the
use of a Clarion VIEW structure, which provides
support for virtual files consisting of selected fields
from one or more (related) data files.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

General Ledger -2-
!
! Clarion for Windows Example Program
!
! Print a General Ledger
!

Ledger PROGRAM !Print the General Ledger

INCLUDE('EQUATES.CLW')

Account FILE,PRE(ACT),DRIVER('TOPSPEED'),NAME('ACCOUNT.TPS')
ByAccount KEY(ACT:AcctNo)
Record RECORD
AcctNo LONG !Account Number
Desc STRING(32) !Account Description
Type STRING(1) !Account Type

END
END

Ledger FILE,PRE(LGR),DRIVER('TOPSPEED'),NAME('LEDGER.TPS')
ByAccount KEY(LGR:AcctNo,LGR:Period,LGR:Date),DUP,OPT
ByBatch KEY(LGR:Period,LGR:Batch,LGR:Sequence),DUP,OPT
Record RECORD
Year SHORT !Fiscal Year
Period LONG !Accounting Period
Batch STRING(8) !Batch ID
Sequence SHORT !Sequence Number
AcctNo LONG !Account Number
Date LONG !Transaction Date
Desc STRING(32) !Description
Debit DECIMAL(11,2) !Debit Amount
Credit DECIMAL(11,2) !Credit Amount

END !End RECORD
END !End FILE

View VIEW(Ledger)
PROJECT(LGR:Year,LGR:Period,LGR:Batch,LGR:AcctNo, |

LGR:Date,LGR:Desc,LGR:Debit,LGR:Credit)
JOIN(ACT:ByAccount,LGR:AcctNo)

PROJECT(ACT:Desc)
END

END

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

General Ledger -3-
Report REPORT,AT(1000,2000,6000,7000),PRE(RPT),FONT('Arial',10,,),THOUS

HEADER,AT(1000,1000,6000,1000)
STRING('Consolidated Industries'),AT(1510,104,,),FONT(,18,,FONT:Bold)
STRING('General Ledger'),AT(2104,469,,),FONT(,16,,FONT:Bold)
STRING('Account'),AT(42,781,,)
STRING('Batch'),AT(708,770,,)
STRING('Description'),AT(1542,770,,)
STRING('Credit'),AT(5177,770,,)
STRING('Debit'),AT(4281,770,,)

END
AcctBreak BREAK(LGR:Date)
DayBreak BREAK(LGR:Date)
Detail DETAIL

STRING(@D1),AT(10,10,,),USE(LGR:Date)
STRING(@S10),AT(615,10,,),USE(LGR:Batch)
STRING(@S30),AT(1396,10,,),USE(LGR:Desc)
STRING(@N(14.2)B),AT(3823,10,,),USE(LGR:Debit)
STRING(@N(14.2)B),AT(4875,10,,),USE(LGR:Credit)

END
FOOTER,AT(,,,167)
END

END
FOOTER,AT(,,,219)

STRING(@N(14.2)B),AT(3823,10,,),USE(LGR:Debit),SUM
STRING(@N(14.2)B),AT(4875,10,,),USE(LGR:Credit),SUM

END
END

END

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

General Ledger -4-
CODE
OPEN(Account) !Connect to the Account table
OPEN(Ledger) !Connect to the Ledger table
SET(LGR:ByAccount) !Use the account number key
OPEN(View) !Open the Ledger/Account view
OPEN(Report) !Open General Ledger report
LOOP !Loop thru each row

NEXT(View) ! Fetch a row
IF ERROR() THEN BREAK. ! If no more then quit
PRINT(Detail) ! Print a line

END !End the LOOP
CLOSE(View) !Close the view
CLOSE(Report) !Close the report
CLOSE(Account) !Disconnect from the Account table
CLOSE(Ledger) !Disconnect from the Ledger table
RETURN !End the program

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Smart Typing
Clarion supports a very wide selection of data
types—and we make it easy for you to work with
them. Most importantly, you never have to worry
about casting or incompatible data types—it’s the
compiler’s job to automatically convert them for you.
You can concatenate a string and a decimal variable,
without having to use string functions to convert
the decimal:

‘The grand total is: ‘ & GrandTotal

Some of the specific data types, such as TIME, are
designed to match specific databases such as
Btrieve. Other special types are designed to make
working in Windows easier.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

A Rich Selection of Data Types -1-
■ The GROUP type allows you to declare a custom

structure to match a C struct. This is important
if you wish to use many Windows API calls. You
can prototype any function in an external .DLL
(such as the Windows API libraries) and use it in
your applications. This provides full access to
Windows features even as Microsoft adds new
ones. It allows you to fully integrate your
applications into the Windows environment.

Language Reference:
Data Types

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

A Rich Selection of Data Types -2-
■ The REFERENCE type allows you to use the

equivalent of C pointers, but safely. The most
common cause for General Protection Faults in
Windows are errant pointers—when an
application writes to an illegal memory address
referenced by a pointer which no longer points to
where it was supposed to. Clarion automatically
dereferences REFERENCE variables after their
use, so you can’t make this mistake.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

A Rich Selection of Data Types -3-
■ The DECIMAL type allows you to use our Binary

Coded Decimal math libraries. Does your business
program perform multiplication or division
operations on currency? Consider the following
operation:

AmtInYen = AmtInDollars * 100.375

If you utilize floating point variables for this, you
may receive an incorrect answer. If you convert to
integer variables, you’re more likely to arrive at
the correct answer. (This has nothing to do with
the famous Pentium flaw, by the way; this is
universal for all PCs). The Binary Coded Decimal
math support in Clarion, by performing integer
operations only, automatically insures your
currency calculations are accurate.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

A Rich Selection of Data Types -4-
■ The BIND and EVALUATE statements provide an

additional level of flexibility beyond most
compiled languages. You can take a variable
whose contents are known only at runtime
(generally to hold some end user input), and
execute a statement dependent upon it. This
provides the freedom programmers coming from
interpreted development environments are used
to, even while taking advantage of the far greater
performance offered by a compiled application.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

A Rich Selection of Data Types -4-
■ The PICTURE string automatically formats or

deformats the appearance of values in window or
report controls. Consider all the casts and lines
of hand-coded string functions necessary for
formatting output in any other language—the
dictionary can store PICTURE strings by field.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Origins of the Clarion Language...
Though too long to print here, we’ve included an
article called “Origins of the Clarion Language” in the
Adobe Acrobat documents on the Evaluation Edition
CD. It documents some of the thinking that went
into the creation of the Clarion language syntax and
structure. Another article, called “Software
Manufacturing” reprinted from the February
TopSpeed Developer Newsletter, discusses TopSpeed’s
vision of the future of programming. It discusses how
the Clarion language and template development
system fits into component oriented software
development.

Origins of the
Clarion Language

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Clarion Template Language
Previously, we’ve compared templates to base object
classes: they contain code and data; but they
provide better code reusability because templates
have an interface that draws you into the process of
setting properties, encouraging developers to use
them more often. Developers can assemble an
application from prefabricated parts—templates—
in a fraction of the time it would take to hand-code.
Whether from the box, from a third party vendor, or
one written by the developer, TopSpeed wants
developers to have a template for every functionality
their applications will ever need.

Template
Language Reference

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Learning to Use Templates -1-
Like objects, Clarion templates store executable
code and data. Learning how to use templates,
however, doesn’t require the huge investment of time
that learning an object oriented language usually
requires. The template user interface makes setting
template properties interactive. When using
templates, Clarion developers have full access to
visual design tools for customizing windows and
reports. The templates include symbolic, live links to
the data dictionary which holds the plan for the
application. It’s like having an object that’s
intimately acquainted to your database. When
placing data controls, the developer simply chooses
a database field from a hierarchical list.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Learning to Use Templates -2-
Learning to use the templates, or learning to write
your own, gives you the software reusability
previously claimed exclusively by OOP programmers.
Better still, the template interface makes it far
easier to extend reusability from application to
application, or from developer to developer. Instead
of managing dense object oriented syntax, the
Clarion developer, after designing the application’s
windows, fills in a series of edit boxes and chooses
options from drop down lists. These options tell the
template exactly what functionality the developer
wants to implement. The Application Generator then
generates only that code—without “object bloat.”

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Intelligent Code Generators
Templates, therefore, are intelligent code-generators,
over which you have complete control. The actual
“physical” template is a text file which contains
Clarion language and Clarion Template language
statements. These include:

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Template Symbols
■ Predefined template symbols (variables) which

store developer input and/or database
dictionary options.

%Application
%DictionaryFile

%File
%Field
%Key
%Relation

%Program
%GlobalData
%Module

%ModuleProcedure
%MapItem
%ModuleData

%Procedure
%Report

%ReportControl
%ReportControlField

%Window
%WindowEvent
%Control

%ControlEvent
%ProcedureCalled
%LocalData
%ActiveTemplate

%ActiveTemplateInstance
%Formula

%Formula Expression

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Template User Interface Controls
■ Template user interface controls which appear in

the Procedure Properties and Actions dialogs for
each template. These include edit boxes, strings,
check boxes, drop down lists, etc. The Application
Generator stores the developer input gathered
by these controls in template symbols. When
writing your own templates, you use the
#PROMPT statement to create a control and
provide options for the developer using your
template. Further statements validate the
developer’s input, so that you can be sure of
generating the correct code. For example, the
following template language statement asks for
a file name and stores it. The REQ (required)
attribute specifies it must be filled out before
the Actions dialog can be completed:

#PROMPT(‘Ask for File Name’, FILE), %InputFile, REQ

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Clarion Language Within Templates
■ Clarion language code, mixed with template

symbols where necessary. Assume, for example,
the template makes a list of files from the
database dictionary available to the developer,
then stores the developer’s choice in a template
symbol called %FileToOpen. To specify that the
generated code should use that choice as the
parameter of the OPEN statement, the
template includes this statement:

OPEN(%FileToOpen)

If the developer chose a data file called “ShipTo” from
the list, the actual generated code would then be:

OPEN(ShipTo)

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Template Control Structures
■ Control structures that branch source code

generation based on the developer’s input, or
options defined in the database dictionary. In
this way, the templates generate only the source
code that should be generated, based on the
developer’s input, and the database dictionary.
Additional control statements specify exactly
where to “place” the generated Clarion language
source code. An include statement, for example,
can be directed to the MAP, which contains all
the prototypes and external source code
modules.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Template Types
These, taken all together, provide the Application
Generator with the ability to gather input from the
developer and from the database dictionary, then
generate Clarion language source code files with
precisely the statements needed to support the
functionality requested, in the sequence they should
appear. There are several types of Clarion templates,
each appropriate for a different job. These include:

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Procedure Templates
■ Procedure templates generate an entire

procedure or function. They typically include a
window or report structure and several
predefined controls. To customize a procedure
template, you generally populate the window or
report with database fields. The Application
Generator places the controls appropriate to
the field. Because they incorporate the most
functionality in “one fell swoop,” procedure
templates help you develop apps very quickly.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Control Templates
■ Control templates place one or more controls in

a window or report. Templates are granular in
nature; you can drill down from big parts
(procedure templates) to smaller parts (control
templates). In fact the default browse template
is built out of smaller parts—the control
templates for the list box and buttons you see
when you choose the browse template. A single
window can contain many control templates. One
of the example applications displays a
genealogical tree—made up of seven listbox
control templates—synchronized to display the
ancestors for a single selected member. All the
code necessary for synchronizing is generated by
the control templates. The developer simply
selects fields and other options in the Actions
dialog boxes for the control templates.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Code Templates
■ Code templates generate executable code into

an embed point. Perhaps more than any other
template type, these are the most useful to the
developer who wishes to cut his or her repetitive
coding tasks.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Competitive

Extension Templates
■ Extension templates add executable code to a

procedure template, without tying the code to a
specific control. If you find yourself habitually
adding the same code to customize the default
templates, you should consider writing an
extension template. Some developers, for
example, have written extension templates to
change the behavior of the default form
template. Their end users prefer the “old” DOS
method of using the Enter key to accept user
entry and move to the next field, rather than the
Windows convention of using the Tab key (some
refer to this as heads-down entry). Rather than
adding code to support this for every form, the
template extension appears as an extra
checkbox in the form template interface. One
check and the developer adds the code.

Tutorial

Reviews

Introduction

Manuals

HyperText Node -6-
Here's several suggested topics you can jump to
from here. Just click on the text description below:

❏ Next in Sequence
❏ A Brief Preface
❏ What is Clarion for Windows?
❏ Code Reusability and Productivity
❏ Development Environment Features
❏ How Should You Evaluate?
❏ Development Flowchart
❏ Pre-Planning Your App With the Data Dictionary
❏ The Browse-Form-Browse Paradigm
❏ Expressive, Compact Code Means Productivity
❏ Specialized Data Structures
❏ The Clarion Template Language
❏ Competitive Analysis
❏ Hypertext Hub

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive Summaries
This section identifies some competitive
development systems, and presents capsule
summaries of their strengths and weaknesses.

We’ll discuss three competitors. Two produce
interpreted or scripted applications: Microsoft®
Visual Basic™ 3.0, and Powersoft™ PowerBuilder
DeskTop™ 4.0. The third produces compiled
applications: Borland Delphi™ 1.0. At the end of the
section, you’ll find a competitive feature grid.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Frank, Honest Discussion
Frankly, we thought we’d be a little different than your
usual marketing document in this section: after we
discuss the other products’ strengths and
weaknesses, we’ll honestly discuss our own!

We expect you’ve already explored Clarion for Windows
a bit, and have already formed some opinion. There’s
a wealth of Windows development tools out there;
and there’s even more business problems awaiting
the programmer with the right tool for the job. We
want to help you identify the right tool—because we
think, in many cases, it’s Clarion for Windows!

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

32-Bit Competitors
At the time we went to press, Microsoft Visual Basic
had gone gold, but had not yet shipped. Delphi was
expected to ship a 32-bit compiler before the end of
the year. Powersoft was expected to ship a 32-bit
compiler sometime in 1996.

These comparisons, therefore, are against the 16-bit
competitors available at the time we created the
Evaluation Edition. We look forward to adding
comparisons to their updated 32-bit compilers as
they become available.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

The Gauge Application
The Evaluation Edition CD includes an application
which measures the competitive performance of 16-
bit applications created by the products described
in this section.

It tests and compares CPU intensive performance
(how many prime numbers can be computed in the
same amount of time), and display performance
(repeatedly painting a set of controls).

To install the application, please run SETUP.EXE in the
\GAUGE subdirectory on the Evaluation Edition CD.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Microsoft Visual Basic Professional

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Microsoft Visual Basic Professional
Visual Basic produces executables that call a run-
time interpreter that executes pseudo-code, rather
than machine code. The additional overhead of
reading the p-code, then producing the machine
instructions to run it generally results in
significantly slower performance than that provided
by a compiled application. The Professional Edition of
VB includes the Jet database engine, database
controls, and is priced for the mass market. It’s the
market leader in unit sales for all Rapid Application
Development tools.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Visual Basic’s Strengths Include:
■ VB’s biggest strength is as a visual designer of

applications. This has helped it become the best
selling prototyping tool in the world. You can place
user interface controls quickly.

■ Visual Basic’s dialect of BASIC is easy to learn.

■ Significant extensibility is available via third
party .VBX’s, and now, .OCX’s.

■ A visually attractive development environment,
based on the forms-based development
paradigm. Virtually all code is attached to user
interface controls.

■ It’s aggressively priced.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Visual Basic’s Drawbacks Include: -1-
■ Slow performance of finished applications.

■ The most common complaint among VB
developers is referred to as “hitting the wall.” The
BASIC dialect lacks the flexibility to customize;
typically, the developer needs to call the Windows
API to go further. This increases development
time because it must be hand coded.

■ When using the Jet database engine, the
finished application can be resource hungry. End
users may sometimes complain about
performance on RAM-hungry systems, especially
when running other applications at the same
time. Both the Jet engine and the VB Runtime
modules require a larger footprint with VB 4.0.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Visual Basic’s Drawbacks Include: -2-
■ The Jet database engine, when called by data

aware controls in the default manner, can be slow.
Many developers find they must hand code
direct calls to Jet, increasing development time.

■ The Jet database engine displays significant
weaknesses in a multi-user environment, both in
stability and speed. It simply does not reliably
safeguard against deadlock.

■ Data controls, by default, do not support
transaction processing. This must be hand-
coded, increasing development time. Referential
Integrity is only supported when using
transaction processing, meaning that in its
default state, VB does not support RI.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Visual Basic’s Drawbacks Include: -3-
■ Visual Basic 4.0 requires separate development

environments and separate projects for 16 and
32-bit applications.

■ The dropping of support for .VBX’s in VB 4.0
obsoletes significant investments for many VB
programmers. Programmers often note that
although VB is aggressively priced, real
programming jobs nearly always require .VBX’s,
raising the price of the total system.

■ It has no database dictionary.

■ It has no built-in reporting tools, relying on a
limited edition of Crystal Reports, instead.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Visual Basic’s Drawbacks Include: -3-
■ With virtually all code attached to user

interface controls, organization can be a sore
point in a large project. Many have called the
code “hidden behind a thousand doors.” When
looking for a specific piece of code to edit, the
programmer has to remember what control it’s
attached to!

■ Every control requires you to write some code.

■ Debugging is weak.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Powersoft PowerBuilder DeskTop

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Powersoft PowerBuilder DeskTop
PowerBuilder produces executables that call a run-
time interpreter that executes scripts, rather than
machine code. The additional overhead of reading the
script, then producing the machine instructions to
run it generally results in significantly slower
performance than that provided by a compiled
application. PowerBuilder includes a limited version of
WatCom database engine. It’s the market leader in
middleware tools for connecting to SQL databases.

PowerBuilder 5.0, due in the first half of 1996, will
include a compiler.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

PowerBuilder’s Strengths Include: -1-
■ Many consider its higher priced Enterprise

“sibling” the tool of choice for connecting to
industry leading SQL databases.

■ When scalability is paramount, it offers an
excellent migration path to its higher priced
versions.

■ When portability to other platforms is
important, it may offer the best choice of any
RAD tool.

■ The scripting language offers many of the
features of OOP languages, including inheritance
and encapsulation.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

PowerBuilder’s Strengths Include: -2-
■ It’s the only other product in this group besides

Clarion that has a professional database
dictionary.

■ Reporting tools are good.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

PowerBuilder’s Weaknesses Include: -1-
■ According to many users, the development

environment and applications are notoriously
unstable, leading to frequent GPF’s.

■ Slow performance of finished applications:
PowerBuilder’s DataWindows, which are its main
means of displaying controls containing data
from the database, have come in for much
criticism in particular.

■ Large runtime requirements for applications, both
for disk space and memory.

■ The scripting language has a steep learning curve.

■ It provides the weakest .VBX support of these
Borland Delphi of these four products.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Borland Delphi

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Borland Delphi
Borland Delphi produces true executables, using the
Borland Object Pascal compiler. It uses the Borland
Database Engine as its database engine. Delphi is
aggressively priced (though the Client/Server edition
is significantly more expensive).

Delphi32 is expected to ship in late 1995. It’s
expected that the product will require separate
compilers and separate projects for 16 and 32-bit
applications.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Delphi’s Strengths Include: -1-
■ Compiled applications run fast, and are small if

you don’t use the Borland Database Engine or
ReportSmith.

■ Borland, as the publisher of both Paradox and
dBase, offers the most comprehensive support
for these file formats.

■ It’s a superb tool for general purpose
programming projects, or personal database
applications where the flexibility and strengths
of a database dictionary are considered
unnecessary by the programmer.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Delphi’s Strengths Include: -2-
■ It features a visually attractive interface along

the forms-based programming paradigm
pioneered by Visual Basic. (While this can lead to
the “behind 1000 doors” syndrome that VB
suffers from, it’s somewhat more organized).

■ It features a good assortment of data controls.

■ Object Pascal offers many of the features of OOP
languages, including inheritance and
encapsulation.

■ Good support for OLE 2.

■ The development environment is very stable.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Delphi’s Weaknesses Include -1-
■ No database dictionary: Delphi’s database

wizards are one-way tools. If, for example, you
realize you need to add a field in the middle of a
project, you’re on your own.

■ There is no built-in reporting tool. The add-in,
Borland ReportSmith, looks like a million dollars,
but is unwieldy. It’s a resource glutton, and
appears to your end user as a separate
application.

■ Huge run-times for the add-ins, ReportSmith
and the Borland Database Engine: when
distributing a database app with reports, allow
for six distribution disks at a minimum. Load
times for the end user correspond.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Delphi’s Weaknesses Include -2-
■ Despite the VCL’s (Visual Component Libraries,

Delphi’s answer to .VBX controls), database
controls still require hand coding. Additionally,
you cannot utilize VCL’s when building a .DLL.

■ For best performance, you must hand code your
SQL statements.

■ Records returned from an SQL SELECT are kept
in memory, and not automatically refreshed by a
new SELECT statement. This may lead to
concurrency problems in a multi-user
environment.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Delphi’s Weaknesses Include -3-
■ Poor documentation: the language reference

manual does not ship with the product and
costs extra. Object Pascal requires the steep
learning curve that most object oriented
languages require.

■ Using the configuration tools for the Borland
Database Engine, an end user can delete the
references to your database.

■ MDI database applications are very difficult to
program.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

TopSpeed Clarion for Windows

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

TopSpeed Clarion for Windows
Clarion for Windows produces true executables, using
the TopSpeed backend compiler. Templates provide
more functionality with less hand coding than other
RAD tools. The Clarion language is a true 4GL which
is easy to learn, and promotes code maintainability.
Clarion for Windows uses replaceable database
drivers for direct access; it ships with Btrieve, and
provides ODBC support for Client/Server.

Clarion for Windows currently includes (you have
them in your hands) both 16 and 32-bit compilers,
and allows you to target either type of executable
while maintaining a single project file.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Clarion’s Strengths Include: -1-
■ Small, fast, compiled executables.

■ Templates support greater productivity, with
most database applications requiring less
coding than other RAD tools.

■ It has a professional strength database
dictionary.

■ It’s undoubtedly the RAD tool of choice for
Client/Server Btrieve, which we believe to be the
most economical and reliable Client/Server
environment for small and moderate sized
businesses. We use BTI’s drivers for direct access.
No other RAD tool can make that claim.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Clarion’s Strengths Include: -2-
■ The Clarion language seems like a throwback to

the days when you could actually read the code
you wrote; yet as the only Windows-aware
language, it’s brought 4GL’s into the GUI age. It’s
a programming language that shows it was
designed for business applications (as shown,
for example, in the decimal data type designed
for accurate currency calculations).

■ Applications are remarkably stable. End users
always comment on this.

■ Support for Referential Integrity constraints,
multi-user concurrency checking are enabled via
options in the database dictionary, no matter
what the database driver. You never have to write
code for this.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Clarion’s Strengths Include: -3-
■ It has a built in programmer’s report designer.

Reports are compiled into the application.

■ Clarion has a small (compared to Visual Basic)
but vocal group of loyal developers, who magazine
reviewers often describe as zealots. The great
advantage to the novice Clarion developer is that
they like to share their knowledge. Our
CompuServe forum probably has more give and
take than any other support forum. You can post
a programming question, and receive three replies
in five hours, often with sample code. This is not
an exaggeration.

■ It has some really nice extras you wouldn’t
expect in a database compiler—like support for
JPEG (16.7 million color) images, for example.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Clarion’s Weaknesses Include -1-
■ No OLE. We will address this in a future release.

■ It’s expensive when compared to some other
products. But we think it offers greater
productivity than the other products, and the
time you save and the money you make by writing
more and better programs will more than pay for
the difference in price. Frankly, we consider our
product to be value-priced; not a loss-leader.

■ It’s user interface is fairly modal for a Windows
application. While the procedure-centric design
of the Application Generator is great for
organizing a programmer who likes to be
organized, the development environment’s single-
minded-modality has driven others crazy.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Clarion’s Weaknesses Include -2-
■ .VBX compatibility is a nuisance, though we’re

probably a little stronger than PowerBuilder in
this category. Between using the huge memory
model and supporting cooperative multi-tasking
within the application thread (16-bit), we stress
a .VBX.

Even commercially available .VBX’s often have
bugs; any significant bugs surface and make the
.VBX unusable. Fortunately, you can tell right
away if a .VBX will be a problem—if you can
register it in the .VBX registry, then you should
be able to use it without a problem.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive Feature Grid
The following charts provide you with comparative
feature references.

Legend: ❍ means the feature is available only by purchasing a higher

priced edition or third party add-on product.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive: Performance

Legend: ❍ means the feature is available only by purchasing a higher

priced edition or third party add-on product.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive: Database

Legend: ❍ means the feature is available only by purchasing a higher

priced edition or third party add-on product.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive: Connectivity -1-

Legend: ❍ means the feature is available only by purchasing a higher

priced edition or third party add-on product.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive: Connectivity -2-

Legend: ❍ means the feature is available only by purchasing a higher

priced edition or third party add-on product.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive: Productivity

Legend: ❍ means the feature is available only by purchasing a higher

priced edition or third party add-on product.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive: Language

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive: Business Solutions

Legend: ❍ means the feature is available only by purchasing a higher

priced edition or third party add-on product.

Hub

Node

Welcome

Tutorial

Architecture

Prototype

Language

Competitive: Debugger

Legend: ❍ means the feature is available only by purchasing a higher

priced edition or third party add-on product.

Tutorial

Reviews

Introduction

Manuals

Marketing Documents
The following marketing documents are included on
the CD, in Adobe Acrobat Viewer form:

❏ Clarion for Windows 4-color brochure
❏ Vision
❏ History
❏ Clarion Education/Seminar Schedule
❏ CW 1.5 Press Release
❏ Directory of International Distributors
❏ TopSpeed Personnel

Tutorial

Reviews

Introduction

Manuals

Manuals
The following manuals are included on the CD, in
Adobe Acrobat Viewer form:

❏ Getting Started
❏ User's Guide
❏ Language Reference
❏ Template Language Reference

In addition, the following documents contain the
contents of this online evaluation guide, formatted
to fit letter sized paper, to make it easier to print
on your local printer:

❏ Tutorial Exercise one
❏ Tutorial Exercise two
❏ The Evaluation Guide (except for the tutorials)

Tutorial

Reviews

Introduction

Manuals

Other Documents
The following documents are included on the CD, in
Adobe Acrobat Viewer form:

❏ Origins of the Clarion Language
❏ Software Manufacturing
❏ Clarion vs. Delphi
❏ Migrating to Windows the Easy Way
❏ February 1995 Newsletter
❏ Clarion Style Guide
❏ User Group Directory
❏ CompuServe Library Catalog

The Evaluation Edition CD also offers excerpts
from third party files— utilities, example
programs, and tips—taken from our
CompuServe™ forum. See the catalog file for
details.

Tutorial

Reviews

Introduction

Manuals

Third Party Documents
The following documents are included on the CD, in
Adobe Acrobat Viewer form. When you buy the full
product, you'll find a productivity pack with additional
materials from other vendors. And we'll send you a
quarterly mailing displaying other resources, as well.

❏ C3: C3 Flyer
C3 Development is a software vendor specializing in Clarion templates. The CD
includes demos of eight template packages.

❏ Chariot: dWiz Flyer
Chariot is the developer of dWiz, a dictionary editor and CASE tool add-in for Clarion
for Windows. The CD includes a demo of dWiz.

❏ Mitten: Mitten Flyer
Mitten Software distributes third party templates and Clarion literature.

❏ RSI: TeamLink Flyer cc:Mail Flyer
RSI is a software vendor which specializes in Clarion for Windows add-ins. TeamLink is
a version-control and team-development add-in, for use with PVCS. RSI also offers a
cc:Mail connectivity add-in.

❏ ToolCraft: ToolCraft Flyer
ToolCraft is a software vendor specializing in Clarion templates. The Evaluation edition
features a special Evaluation version of their templates for Clarion for Windows. To
install, run SETUP in the \3RDPARTY\TOOLS\TOOLCRFT directory.

Tutorial

Reviews

Introduction

Manuals

Copyright Notice
COPYRIGHT 1995 by TopSpeed Corporation

All Rights Reserved
This publication is protected by copyright and all rights are reserved by TopSpeed Corporation. It
may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior consent, in writing, from TopSpeed
Corporation.

This publication supports Clarion for Windows. It is possible that it may contain technical or
typographical errors. TopSpeed Corporation provides this publication "as is," without warranty of
any kind, either expressed or implied.

TopSpeed Corporation
150 East Sample Rd
Pompano Beach, FL 33064
(954) 785-4555

TopSpeed Software Limited
Clare House, Thompsons Close
Harpenden, Herts AL5 4ES
United Kingdom
+44 (0) 158 276 3200

Trademark Acknowledgments:

TopSpeed is a registered trademark, and Clarion for Windows is a trademark of TopSpeed
Corporation
Microsoft, Windows, and Visual Basic are registered trademarks of Microsoft Corp.
PowerBuilder is a registered trademark, and Powersoft Enterprise Series is a trademark of Powersoft
Corporation
Borland is a registered trademark, and Delphi a trademark of Borland International, Inc.
All other products and company names are trademarks or registered trademarks of their
respective owners.

